Solveeit Logo

Question

Question: Plane XOZ divides the join of \(\left( 1,-1,5 \right)\) and \(\left( 2,3,4 \right)\) in the ratio \(...

Plane XOZ divides the join of (1,1,5)\left( 1,-1,5 \right) and (2,3,4)\left( 2,3,4 \right) in the ratio λ:1\lambda :1 , then λ\lambda is:
A. -3
B. 14\dfrac{1}{4}
C. 3
D. 13\dfrac{1}{3}

Explanation

Solution

Section Formula: The co-ordinates of a point P(x,y,z)P\left( x,y,z \right) which divides the line joining two points A(x1,y1,z1)A\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right) and B(x2,y2,z2)B\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right) in the ratio AP:PB=m:nAP:PB=m:n, are given as:
For internal division: P(x,y)=(mx2+nx1m+n,my2+ny1m+n,mz2+nz1m+n)P(x,y)=\left( \dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n},\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n},\dfrac{m{{z}_{2}}+n{{z}_{1}}}{m+n} \right) .
For external division: P(x,y)=(mx2nx1mn,my2ny1mnmz2nz1mn)P(x,y)=\left( \dfrac{m{{x}_{2}}-n{{x}_{1}}}{m-n},\dfrac{m{{y}_{2}}-n{{y}_{1}}}{m-n}\dfrac{m{{z}_{2}}-n{{z}_{1}}}{m-n} \right) .
The equation of the plane XOZ is y=0y=0 .

Complete step-by-step answer:
Let's say that the line joining the points A(1,1,5)A\left( 1,-1,5 \right) and B(2,3,4)B\left( 2,3,4 \right) meets the plane XOZ at a point P(x,y,z)P\left( x,y,z \right) , which divides the line in the ratio AP:PB=λ:1AP:PB=\lambda :1 .
Since the point P is on the plane XOZ, its y co-ordinate of must be 0. i.e. The point P is (x,0,z)\left( x,0,z \right) .
Also, since the y co-ordinate of A is negative (-1) and the y co-ordinate of B is positive (3), the point P with y co-ordinate 0 must be in-between A and B and thus, must divide the line AB internally in the given ratio.
Now, using the section formula, we must have:
P(x,0,z)=(λ(2)+1(1)λ+1,λ(3)+1(1)λ+1,λ(4)+1(5)λ+1)P(x,0,z)=\left( \dfrac{\lambda (2)+1(1)}{\lambda +1},\dfrac{\lambda (3)+1(-1)}{\lambda +1},\dfrac{\lambda (4)+1(5)}{\lambda +1} \right)
Equating the y coordinates, we get the following equation:
0=3λ1λ+10=\dfrac{3\lambda -1}{\lambda +1}
On multiplying both sides of the equation by λ+1\lambda +1 , we get:
0=3λ10=3\lambda -1
3λ=13\lambda =1
λ=13\lambda =\dfrac{1}{3}
Hence, the correct answer option is D. 13\dfrac{1}{3} .

Note: The XOY, XOZ and YOZ planes are also called XY, XZ and YZ planes respectively.
The general equation of a plane is Ax+By+Cz=DAx+By+Cz=D .
The general equation of the XY plane is 0x+0y+z=00x+0y+z=0 ORz=0z=0 , and so on for YZ and XZ planes.
The distance between a point P(x1,y1,z1)P\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right) and the Ax+By+Cz+D=0Ax+By+Cz+D=0 is given by: Distance=Ax1+Bx2+Cz2+DA2+B2+C2\text{Distance}=\dfrac{|A{{x}_{1}}+B{{x}_{2}}+C{{z}_{2}}+D|}{\sqrt{{{A}^{2}}+{{B}^{2}}+{{C}^{2}}}} .