Solveeit Logo

Question

Physics Question on Dimensional Analysis

Planck's constant h, speed of light c and gravitational constant G are used to form a unit of length L and a unit of mass M. Then the correct option(s) is(are)

A

McM \propto \sqrt{c}

B

MGM \propto \sqrt{G}

C

LhL \propto \sqrt{h}

D

LGL \propto \sqrt{G}

Answer

LGL \propto \sqrt{G}

Explanation

Solution

E=hcλE = \frac{hc}{\lambda} E=Gm1m2rE = \frac{-Gm_{1}m_{2}}{r} hcλ=Gm2r\frac{hc}{\lambda} = \frac{Gm^{2}}{r} unit of ?? and r is L So M=(hcG)1/2(1)M = \left(\frac{hc}{G}\right)^{1/2}\quad\quad\dots\left(1\right) McM1GAns.(A)M \propto \sqrt{c}\quad\quad M \propto \frac{1}{\sqrt{G}}\quad\quad Ans. \left(A\right) E=mc2E = mc^{2} E=hcλE = \frac{hc}{\lambda} hcλ=mc2\frac{hc}{\lambda} = mc^{2} λ=hm\lambda = \frac{h}{m} L=hM\therefore\,L = \frac{h}{M} L=h(hc)1/2G1/2L = \frac{h}{\left(hc\right)^{1/2}}G^{1/2}\quad\quad from (1)\left(1\right) LGLh\therefore\,L \propto \sqrt{G} \quad L \propto \sqrt{h}