Solveeit Logo

Question

Question: Pick out the greatest fraction \(8\dfrac{1}{4},2\dfrac{9}{{13}},4\dfrac{1}{2},1\dfrac{3}{6}.\)...

Pick out the greatest fraction 814,2913,412,136.8\dfrac{1}{4},2\dfrac{9}{{13}},4\dfrac{1}{2},1\dfrac{3}{6}.

Explanation

Solution

Hint: The value of mixed fraction abc=(a×c)+bca\dfrac{b}{c} = \dfrac{{(a \times c) + b}}{c}

Complete step-by-step answer:
The given mixed fractions are 814,2913,412,136.8\dfrac{1}{4},2\dfrac{9}{{13}},4\dfrac{1}{2},1\dfrac{3}{6}.
Converting these mixed fraction into fractions

814=(8×4)+14=3348\dfrac{1}{4} = \dfrac{{\left( {8 \times 4} \right) + 1}}{4} = \dfrac{{33}}{4}

2913=(13×2)+913=35132\dfrac{9}{{13}} = \dfrac{{\left( {13 \times 2} \right) + 9}}{{13}} = \dfrac{{35}}{{13}}

412=(2×4)+12=924\dfrac{1}{2} = \dfrac{{\left( {2 \times 4} \right) + 1}}{2} = \dfrac{9}{2}

136=(6×1)+36=96=321\dfrac{3}{6} = \dfrac{{\left( {6 \times 1} \right) + 3}}{6} = \dfrac{9}{6} = \dfrac{3}{2}

The values of these fractions are

334=8.25,  35132.69,  92=4.5,  32=1.5\dfrac{{33}}{4} = 8.25,\;\dfrac{{35}}{{13}} \approx 2.69,\;\dfrac{9}{2} = 4.5,\;\dfrac{3}{2} = 1.5

If we compare the values, we get 32<3513<92<334\dfrac{3}{2} < \dfrac{{35}}{{13}} < \dfrac{9}{2} < \dfrac{{33}}{4}

334 \Rightarrow \dfrac{{33}}{4} is the greatest of the four fractions.

Corresponding mixed fraction for 334=814.\dfrac{{33}}{4} = 8\dfrac{1}{4}.

\therefore The greatest fraction of the four fractions is 814.8\dfrac{1}{4}.

Note: We have to find the greatest mixed fraction of the given mixed fractions. We need to know the values of these mixed fractions to find the greatest fraction. So we converted mixed fractions to rational numbers to find their values easily.