Question
Question: $\Pi$ 1. $\int_{0.5}^{1} \frac{dx}{1+e^{x}}$...
Π
- ∫0.511+exdx

0.5 + ln((1+e^{0.5})/(1+e))
Solution
The problem requires evaluating a definite integral. First, we find the indefinite integral of the given function, and then apply the limits of integration.
1. Find the indefinite integral ∫1+exdx
We can use the substitution method or algebraic manipulation. Multiply the numerator and denominator by e−x: I=∫1+exdx=∫e−x(1+ex)e−xdx=∫e−x+1e−xdx Let u=e−x+1. Differentiating u with respect to x, we get du=−e−xdx. So, e−xdx=−du. Substitute these into the integral: I=∫u−du=−∫u1du=−ln∣u∣+C Substitute back u=e−x+1: I=−ln(e−x+1)+C Since e−x+1=ex1+1=ex1+ex, we can rewrite the expression: I=−ln(ex1+ex)+C Using the logarithm property ln(ba)=lna−lnb: I=−(ln(1+ex)−ln(ex))+C I=−ln(1+ex)+ln(ex)+C Since ln(ex)=x: I=x−ln(1+ex)+C
2. Evaluate the definite integral
Now, we apply the limits of integration from 0.5 to 1: ∫0.511+exdx=[x−ln(1+ex)]0.51 Using the Fundamental Theorem of Calculus, F(b)−F(a): =(1−ln(1+e1))−(0.5−ln(1+e0.5)) =1−ln(1+e)−0.5+ln(1+e0.5) Combine the constant terms and the logarithm terms: =(1−0.5)+(ln(1+e0.5)−ln(1+e)) =0.5+ln(1+e1+e0.5)