Question
Question: If $\int_{0}^{1} \frac{1}{\sqrt{3+x}+\sqrt{1+x}} dx = a + b\sqrt{2} + c\sqrt{3}$, where a, b, c are ...
If ∫013+x+1+x1dx=a+b2+c3, where a, b, c are rational numbers, then 2a+3b−4c is equal to :

A
4
B
10
C
7
D
8
Answer
8
Explanation
Solution
Here's how to solve this definite integral problem:
1. Rationalize the Integrand
Multiply the numerator and denominator by the conjugate:
3+x+1+x1⋅3+x−1+x3+x−1+x=23+x−1+x
2. Evaluate the Definite Integral
∫0123+x−1+xdx=21∫01(3+x−1+x)dx
Using the power rule for integration:
=21[32(3+x)3/2−32(1+x)3/2]01
=31[(3+x)3/2−(1+x)3/2]01
Evaluate at the limits:
=31[(43/2−23/2)−(33/2−13/2)]
=31[(8−22)−(33−1)]
=31[9−22−33]=3−322−3
3. Identify a, b, c
Comparing 3−322−3 with a+b2+c3:
a=3, b=−32, c=−1
4. Calculate 2a+3b−4c
2(3)+3(−32)−4(−1)=6−2+4=8