Solveeit Logo

Question

Question: If $\int_{0}^{1} \frac{1}{\sqrt{3+x}+\sqrt{1+x}} dx = a + b\sqrt{2} + c\sqrt{3}$, where a, b, c are ...

If 0113+x+1+xdx=a+b2+c3\int_{0}^{1} \frac{1}{\sqrt{3+x}+\sqrt{1+x}} dx = a + b\sqrt{2} + c\sqrt{3}, where a, b, c are rational numbers, then 2a+3b4c2a + 3b - 4c is equal to :

A

4

B

10

C

7

D

8

Answer

8

Explanation

Solution

Here's how to solve this definite integral problem:

1. Rationalize the Integrand

Multiply the numerator and denominator by the conjugate:

13+x+1+x3+x1+x3+x1+x=3+x1+x2\frac{1}{\sqrt{3+x}+\sqrt{1+x}} \cdot \frac{\sqrt{3+x}-\sqrt{1+x}}{\sqrt{3+x}-\sqrt{1+x}} = \frac{\sqrt{3+x}-\sqrt{1+x}}{2}

2. Evaluate the Definite Integral

013+x1+x2dx=1201(3+x1+x)dx\int_{0}^{1} \frac{\sqrt{3+x}-\sqrt{1+x}}{2} dx = \frac{1}{2} \int_{0}^{1} (\sqrt{3+x} - \sqrt{1+x}) dx

Using the power rule for integration:

=12[23(3+x)3/223(1+x)3/2]01= \frac{1}{2} \left[ \frac{2}{3}(3+x)^{3/2} - \frac{2}{3}(1+x)^{3/2} \right]_{0}^{1}

=13[(3+x)3/2(1+x)3/2]01= \frac{1}{3} \left[ (3+x)^{3/2} - (1+x)^{3/2} \right]_{0}^{1}

Evaluate at the limits:

=13[(43/223/2)(33/213/2)]= \frac{1}{3} \left[ (4^{3/2} - 2^{3/2}) - (3^{3/2} - 1^{3/2}) \right]

=13[(822)(331)]= \frac{1}{3} \left[ (8 - 2\sqrt{2}) - (3\sqrt{3} - 1) \right]

=13[92233]=32323= \frac{1}{3} \left[ 9 - 2\sqrt{2} - 3\sqrt{3} \right] = 3 - \frac{2}{3}\sqrt{2} - \sqrt{3}

3. Identify a, b, c

Comparing 323233 - \frac{2}{3}\sqrt{2} - \sqrt{3} with a+b2+c3a + b\sqrt{2} + c\sqrt{3}:

a=3a = 3, b=23b = -\frac{2}{3}, c=1c = -1

4. Calculate 2a+3b4c2a + 3b - 4c

2(3)+3(23)4(1)=62+4=82(3) + 3(-\frac{2}{3}) - 4(-1) = 6 - 2 + 4 = 8