Solveeit Logo

Question

Question: Phosphoric acid \(\left( {{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_4}} \right)\) is widely used ...

Phosphoric acid (H3PO4)\left( {{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_4}} \right) is widely used to make fertilizers and can be prepared in a two-step process.
Step I: P4+5O2P4O10{{\text{P}}_{\text{4}}}\, + \,{\text{5}}\,{{\text{O}}_{\text{2}}}\, \to \,{{\text{P}}_{\text{4}}}{{\text{O}}_{{\text{10}}}}
Step II: P4O10+6H2O4H3PO4{{\text{P}}_{\text{4}}}{{\text{O}}_{{\text{10}}}}\, + \,{\text{6}}\,{{\text{H}}_{\text{2}}}{\text{O}}\, \to \,4\,{{\text{H}}_3}{\text{P}}{{\text{O}}_{\text{4}}}
We allow 310310 g of phosphorus to react with excess oxygen, which forms tetraphosphorus oxide (P4O10)\left( {{{\text{P}}_{\text{4}}}{{\text{O}}_{{\text{10}}}}} \right)in 5050% yield. In the step II, 2525% yield of H3PO4{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_4}is obtained.
(atomic weight in amu of P = 3131, H = 11, O = 1616)
Assuming 100100% yield, Calculate the number of moles of H3PO4{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_4} ?

Explanation

Solution

To determine the number of moles and grams of any reactant or product we need a balanced chemical equation. After writing the balanced equation, by comparing the number of moles of the reactant and product, we will determine the mole of H3PO4{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_4}. We can determine the number of mole of tetraphosphorus oxide (P4O10)\left( {{{\text{P}}_{\text{4}}}{{\text{O}}_{{\text{10}}}}} \right)by using the mole formula.

Formula used: Mole = MassMolarmass{\text{Mole}}\,{\text{ = }}\,\dfrac{{{\text{Mass}}}}{{{\text{Molar}}\,{\text{mass}}}}

Complete step-by-step answer: We will determine the mole of phosphorus as follows:

It is given to us that 310310 g of phosphorus react. The molar mass of P4{{\text{P}}_{\text{4}}} is 124124amu.
So, the mole of P4{{\text{P}}_{\text{4}}}is,
Mole = MassMolarmass{\text{Mole}}\,{\text{ = }}\,\dfrac{{{\text{Mass}}}}{{{\text{Molar}}\,{\text{mass}}}}
On substituting 310310 g for mass and 124124amu for molar mass of P4{{\text{P}}_{\text{4}}},
Mole = 310124{\text{Mole}}\,{\text{ = }}\,\dfrac{{310}}{{{\text{124}}}}
Mole = 2.5{\text{Mole}}\,{\text{ = }}\,2.5
Now, we will compare the moles of phosphorus with moles of tetraphosphorus dioxide as follows:
According to the step I Step I: P4+5O2P4O10{{\text{P}}_{\text{4}}}\, + \,{\text{5}}\,{{\text{O}}_{\text{2}}}\, \to \,{{\text{P}}_{\text{4}}}{{\text{O}}_{{\text{10}}}} , one mole of P4{{\text{P}}_{\text{4}}}is giving one mole of P4O10{{\text{P}}_{\text{4}}}{{\text{O}}_{{\text{10}}}} so, 2.52.5moles P4{{\text{P}}_{\text{4}}}will give 2.52.5moles P4O10{{\text{P}}_{\text{4}}}{{\text{O}}_{{\text{10}}}} but the yield of product is 5050% it means one mole of P4{{\text{P}}_{\text{4}}} gives 0.50.5mole of P4O10{{\text{P}}_{\text{4}}}{{\text{O}}_{{\text{10}}}} so, 2.52.5moles P4{{\text{P}}_{\text{4}}}will give,
11 Mole of P4{{\text{P}}_{\text{4}}}= 0.50.5mole of P4O10{{\text{P}}_{\text{4}}}{{\text{O}}_{{\text{10}}}}
2.52.5moles P4{{\text{P}}_{\text{4}}}= 1.251.25mole of P4O10{{\text{P}}_{\text{4}}}{{\text{O}}_{{\text{10}}}}
So, we have 1.251.25mole of P4O10{{\text{P}}_{\text{4}}}{{\text{O}}_{{\text{10}}}}for the reaction of step II.
According to step II, P4O10+6H2O4H3PO4{{\text{P}}_{\text{4}}}{{\text{O}}_{{\text{10}}}}\, + \,{\text{6}}\,{{\text{H}}_{\text{2}}}{\text{O}}\, \to \,4\,{{\text{H}}_3}{\text{P}}{{\text{O}}_{\text{4}}}, one mole of P4O10{{\text{P}}_{\text{4}}}{{\text{O}}_{{\text{10}}}} is giving 44moles of H3PO4{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_4}and it is given that we have to assume100100% yield, means completely reactantP4O10{{\text{P}}_{\text{4}}}{{\text{O}}_{{\text{10}}}} is converting into product. So, 1.251.25mole of P4O10{{\text{P}}_{\text{4}}}{{\text{O}}_{{\text{10}}}}will give,
11 mole of P4O10{{\text{P}}_{\text{4}}}{{\text{O}}_{{\text{10}}}} = 44moles of H3PO4{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_4}
1.251.25 mole of P4O10{{\text{P}}_{\text{4}}}{{\text{O}}_{{\text{10}}}} = 55moles of H3PO4{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_4}
So, 1.251.25 mole of P4O10{{\text{P}}_{\text{4}}}{{\text{O}}_{{\text{10}}}} will give 55moles of H3PO4{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_4}
Therefore, the number of moles of H3PO4{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_4}is 55moles.

Note: Stoichiometry measurements are used to determine the amount of reactant or product from the given amounts. Stoichiometry measurements give quantitative relations among the amounts of various species of a reaction. To determine the stoichiometry relations a balanced equation is necessary. Percent yield is determined as the actual amount of product divided by the theoretical yield of product and multiplied with hundred. The molar mass of the compound is determined by adding the atomic mass of constituting atoms.