Solveeit Logo

Question

Question: Phenol associates in benzene to certain extent to form a dimer. A solution containing \(20 \times {1...

Phenol associates in benzene to certain extent to form a dimer. A solution containing 20×103 kg20 \times {10^{ - 3}}{\text{ kg}} of phenol in 1.0 kg1.0{\text{ kg}} of benzene has its freezing point depressed by 0.69 K0.69{\text{ K}}. Calculate the fraction of phenol that has dimerized. (Kf{K_f} for benzene is 5.12 K kg mol15.12{\text{ K kg mo}}{{\text{l}}^{ - 1}}).

Explanation

Solution

Phenol is dimerized means that two molecules of phenol combine and form a dimer. The decrease in the freezing point of pure solvent when a non-volatile solute is added to it is known as depression in freezing point.

Formulae Used:
Molality(m) = Number of moles(mol)Mass of solvent(kg){\text{Molality}}\left( {\text{m}} \right){\text{ = }}\dfrac{{{\text{Number of moles}}\left( {{\text{mol}}} \right)}}{{{\text{Mass of solvent}}\left( {{\text{kg}}} \right)}}
ΔTf=Kf×m×i\Delta {T_f} = {K_f} \times m \times i

Complete step by step solution:
We have the reaction of dimerization of phenol,
2C6H5OH(C6H5OH)2{\text{2}}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{OH}} \rightleftharpoons {\left( {{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{OH}}} \right)_{\text{2}}}
In the reaction, two molecules of phenol combine and form a dimer.
Thus, the equilibrium table is as follows:
2C6H5OH(C6H5OH)2{\text{2}}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{OH}} \rightleftharpoons {\left( {{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{OH}}} \right)_{\text{2}}}
              1                                        0                    \;\;\;\;\;\;\;1 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 0 \;\;\;\;\;\;\;\;\;\; …… Initial moles
1α                              1 - \alpha \;\;\;\;\;\;\;\;\;\;\;\;\;\;\; α/2\alpha {\text{/2}}             \;\;\;\;\;\; …… Moles at equilibrium
Thus, the total moles of the reactant and product at equilibrium are as follows:
Total moles =1α+α2 = 1 - \alpha + \dfrac{\alpha }{2}
Total moles =1α2 = 1 - \dfrac{\alpha }{2}
Where, α\alpha is the degree of dissociation.
The number of individual ions any ionic compound dissociates into is known as the van’t Hoff factor. Thus,
i=1α2i = 1 - \dfrac{\alpha }{2}
Where ii is the van’t Hoff factor.
The molality of the solution is the number of moles of solute per kilogram of solvent. Thus,
Molality(m) = Number of moles(mol)Mass of solvent(kg){\text{Molality}}\left( {\text{m}} \right){\text{ = }}\dfrac{{{\text{Number of moles}}\left( {{\text{mol}}} \right)}}{{{\text{Mass of solvent}}\left( {{\text{kg}}} \right)}}
Thus,
Molality=Number of moles of phenolMass of benzene{\text{Molality}} = \dfrac{{{\text{Number of moles of phenol}}}}{{{\text{Mass of benzene}}}}
Molality=Mass of phenol/Molar mass of phenolMass of benzene{\text{Molality}} = \dfrac{{{\text{Mass of phenol/Molar mass of phenol}}}}{{{\text{Mass of benzene}}}}
Substitute 20×103 kg=20 g20 \times {10^{ - 3}}{\text{ kg}} = 20{\text{ g}} for the mass of phenol, 94 g mol194{\text{ g mo}}{{\text{l}}^{ - 1}} for the molar mass of phenol, 1.0 kg1.0{\text{ kg}} for the mass of benzene. Thus,
Molality=20 g/94 g mol11.0 kg\Rightarrow {\text{Molality}} = \dfrac{{{\text{20 g/}}94{\text{ g mo}}{{\text{l}}^{ - 1}}}}{{1.0{\text{ kg}}}}
Molality=0.2127 m\Rightarrow {\text{Molality}} = 0.2127{\text{ m}}
Thus, the molality of the solution is 0.2127 m0.2127{\text{ m}}.
The formula for the depression in freezing point is,
ΔTf=Kf×m×i\Delta {T_f} = {K_f} \times m \times i
Where
ΔTf\Delta {T_f} is the depression in freezing point,
Kf{K_f} is the freezing point depression constant,
mm is the molality of the solution,
ii is the van’t Hoff factor
Substitute 0.69 K0.69{\text{ K}} for the depression in freezing point, 5.12 K kg mol15.12{\text{ K kg mo}}{{\text{l}}^{ - 1}} for the freezing point depression constant, 0.2127 m0.2127{\text{ m}} for the molality of the solution, 1α21 - \dfrac{\alpha }{2} for the van’t Hoff factor. Thus,
0.69 K=5.12 K kg mol1×0.2127 m×i\Rightarrow 0.69{\text{ K}} = 5.12{\text{ K kg mo}}{{\text{l}}^{ - 1}} \times 0.2127{\text{ m}} \times i
i=0.69 K5.12 K kg mol1×0.2127 m\Rightarrow i = \dfrac{{0.69{\text{ K}}}}{{5.12{\text{ K kg mo}}{{\text{l}}^{ - 1}} \times 0.2127{\text{ m}}}}
i=0.633\Rightarrow i = 0.633
But i=1α2i = 1 - \dfrac{\alpha }{2}. Thus,
1α2=0.633\Rightarrow 1 - \dfrac{\alpha }{2} = 0.633
2α=1.266\Rightarrow 2 - \alpha = 1.266
α=21.266\Rightarrow \alpha = 2 - 1.266
α=0.734\Rightarrow \alpha = 0.734

**Thus, the fraction of phenol that has dimerized is 0.734×100=73.4%0.734 \times 100 = 73.4\% .

Note: **
The freezing point of a pure solvent decreases when any non-volatile solute is added to it. This is known as depression in freezing point. The freezing point of a pure solvent is always higher than that of its solution.