Solveeit Logo

Question

Question: pH of Ba(OH)2 solution is 12. Its solubility product is...

pH of Ba(OH)2 solution is 12. Its solubility product is

A

106M310 ^ { - 6 } \mathrm { M } ^ { 3 }

B

4×106M34 \times 10 ^ { - 6 } \mathrm { M } ^ { 3 }

C

0.5×107M30.5 \times 10 ^ { - 7 } \mathrm { M } ^ { 3 }

D

5×107M35 \times 10 ^ { - 7 } \mathrm { M } ^ { 3 }

Answer

5×107M35 \times 10 ^ { - 7 } \mathrm { M } ^ { 3 }

Explanation

Solution

Since pH=12pOH=1412=2\mathrm { pH } = 12 \mathrm { pOH } = 14 - 12 = 2

[Ba++]=1022M\therefore \left[ \mathrm { Ba } ^ { + + } \right] = \frac { 10 ^ { - 2 } } { 2 } \mathrm { M } Ksp=[Ba++][OH]2=(1022)2=5×107M3\therefore \mathrm { Ksp } = \left[ \mathrm { Ba } ^ { + + } \right] \left[ \mathrm { OH } ^ { - } \right] ^ { 2 } = \left( \frac { 10 ^ { - 2 } } { 2 } \right) ^ { 2 } = 5 \times 10 ^ { - 7 } \mathrm { M } ^ { 3 }

We know Ba(OH)2Ba+++2OH\mathrm { Ba } ( \mathrm { OH } ) _ { 2 } \quad \mathrm { Ba } ^ { + + } + 2 \mathrm { OH } ^ { - }