Solveeit Logo

Question

Chemistry Question on Equilibrium

pHpH of a saturated solution of Ba(OH)2Ba(OH)_2 is 1212 . The value of solubility product K(sp) K_({sp} ) of Ba(OH)2Ba(OH)_2 is

A

3.3×1073.3 \times 10^{-7}

B

5.0×1075.0 \times 10^{-7}

C

4.0×1064.0 \times 10^{-6}

D

5.0×1065.0 \times 10^{-6}

Answer

5.0×1075.0 \times 10^{-7}

Explanation

Solution

Given, pHpH of Ba(OH)2=12Ba(OH)_2 = 12 pOH=14pH\therefore pOH = 14 - p^H =1412=2= 14 - 12 = 2 We know that, pOH=log[OH]pOH = - \log [OH^-] 2=log[OH]2 = - log [OH^-] [OH]=antilog(2)\, \, [OH^-] = antilog(-2) [OH]=1×102\, \, [OH^-] = 1 \times 10^{-2} Ba(OH)2Ba(OH)_2 dissolves in water as SmolL1Ba(OH)2SBa2++2S2OH\, \, \, _{\, \, S mol L^{-1}}^{Ba(OH)_2} \rightleftharpoons _{\, \, S}^{Ba^{2+}} + _{\, \, 2S}^{2OH^-} [OH]=2S=1×102\therefore \, \, [OH^-] = 2S = 1 \times 10^{-2} S=[OH]2[Ba2+=S]S = \frac{[OH^-]}{2} \, \, \, \, \, [Ba^{2+} = S] [Ba2+]=[OH]2a=1×1022[Ba^{2+} ] = \frac{[OH^-]}{2a} = \frac{1 \times 10^{-2}}{2} Ksp=[Ba2+][OH]K_{sp} = [Ba^{2+} ] [OH^-] =(1×1022)(1×102)2= \bigg (\frac{1 \times 10^{-2}}{2} \bigg ) (1 \times 10^{-2} )^2 =0.5×106=5×107= 0.5 \times 10^{-6} = 5 \times 10^{-7}