Solveeit Logo

Question

Question: Ph of 10^-7M naoh...

Ph of 10^-7M naoh

Answer

7.21

Explanation

Solution

To determine the pH of a 10710^{-7} M NaOH solution, we must consider the autoionization of water, as the concentration of the base is comparable to the concentration of H+H^+ and OHOH^- ions in pure water (10710^{-7} M at 25°C).

  1. Identify the sources of OHOH^- ions:

    • From NaOH (a strong base, fully dissociates): [OH]NaOH=107[OH^-]_{NaOH} = 10^{-7} M.
    • From water autoionization: H2O(l)H+(aq)+OH(aq)H_2O(l) \rightleftharpoons H^+(aq) + OH^-(aq). Let the concentration of H+H^+ ions produced by water be xx. Due to stoichiometry, the concentration of OHOH^- ions produced by water will also be xx.
  2. Express total ion concentrations:

    • Total [H+][H^+] in solution: [H+]total=x[H^+]_{total} = x
    • Total [OH][OH^-] in solution: [OH]total=[OH]NaOH+[OH]water=107+x[OH^-]_{total} = [OH^-]_{NaOH} + [OH^-]_{water} = 10^{-7} + x
  3. Apply the ion product of water (KwK_w):

    At 25°C, Kw=[H+]total[OH]total=1014K_w = [H^+]_{total}[OH^-]_{total} = 10^{-14}. Substitute the expressions from step 2: x(107+x)=1014x(10^{-7} + x) = 10^{-14}

  4. Formulate and solve the quadratic equation:

    107x+x2=101410^{-7}x + x^2 = 10^{-14} x2+107x1014=0x^2 + 10^{-7}x - 10^{-14} = 0

    Using the quadratic formula x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}: Here, a=1a=1, b=107b=10^{-7}, c=1014c=-10^{-14}. x=107±(107)24(1)(1014)2(1)x = \frac{-10^{-7} \pm \sqrt{(10^{-7})^2 - 4(1)(-10^{-14})}}{2(1)} x=107±1014+4×10142x = \frac{-10^{-7} \pm \sqrt{10^{-14} + 4 \times 10^{-14}}}{2} x=107±5×10142x = \frac{-10^{-7} \pm \sqrt{5 \times 10^{-14}}}{2} x=107±5×1072x = \frac{-10^{-7} \pm \sqrt{5} \times 10^{-7}}{2}

    Since xx represents a concentration, it must be positive. We take the positive root. 52.236\sqrt{5} \approx 2.236 x=107+2.236×1072x = \frac{-10^{-7} + 2.236 \times 10^{-7}}{2} x=(2.2361)×1072x = \frac{(2.236 - 1) \times 10^{-7}}{2} x=1.236×1072x = \frac{1.236 \times 10^{-7}}{2} x=0.618×107x = 0.618 \times 10^{-7} M So, [H+]=6.18×108[H^+] = 6.18 \times 10^{-8} M.

  5. Calculate pH:

    pH=log[H+]pH = -\log[H^+] pH=log(6.18×108)pH = -\log(6.18 \times 10^{-8}) pH=(log6.18+log108)pH = -(\log 6.18 + \log 10^{-8}) pH=(log6.188)pH = -(\log 6.18 - 8) pH=8log6.18pH = 8 - \log 6.18

    Using log6.180.791\log 6.18 \approx 0.791: pH=80.791=7.209pH = 8 - 0.791 = 7.209

Alternatively, calculate pOH first: [OH]total=107+x=107+0.618×107=(1+0.618)×107=1.618×107[OH^-]_{total} = 10^{-7} + x = 10^{-7} + 0.618 \times 10^{-7} = (1 + 0.618) \times 10^{-7} = 1.618 \times 10^{-7} M. pOH=log[OH]totalpOH = -\log[OH^-]_{total} pOH=log(1.618×107)pOH = -\log(1.618 \times 10^{-7}) pOH=(log1.618+log107)pOH = -(\log 1.618 + \log 10^{-7}) pOH=(log1.6187)pOH = -(\log 1.618 - 7) pOH=7log1.618pOH = 7 - \log 1.618 Using log1.6180.2089\log 1.618 \approx 0.2089: pOH=70.2089=6.7911pOH = 7 - 0.2089 = 6.7911

Finally, pH=14pOHpH = 14 - pOH pH=146.7911=7.2089pH = 14 - 6.7911 = 7.2089

Rounding to two decimal places, the pH is 7.21.

The final answer is 7.21\boxed{\text{7.21}}.