Question
Mathematics Question on introduction to three dimensional geometry
Perpendicular are drawn from points on the line 2x+2=−1y+1=3z to the plane x+y+z=3. The feet of perpendiculars lie on the line
5x=8y−1=−13z−2
2x=3y−1=−5z−2
4x=3y−1=−7z−2
2x=−7y−1=5z−2
2x=−7y−1=5z−2
Solution
The correct answer is D:2x=−7y−1=5z−2
PLAN To find the foot of perpendiculars and find its locus.
Foot of perpendicular from (x1,y1,z1) to
ax+by+cz+d=0be(x2,y2,z2) then
25mmax2−x1=by2−y1=cz2−z1
35mm=a2+b2+c2−(ax1+by1+cz1+d)
Any point on 2x+2=−1y+1=3z=λ
⇒ 30mmx=2λ−2,y=−λ−1,z=3λ
Let foot of perpendicular from (2λ−2,−λ−1,3λ)
to x+ y + z = 3 be (x2,y2,z2).
∴ 1x2−(2λ−2)=1y2−(−λ−1)=1z2−(3λ)
30mm=1+1+1(2λ−2−λ−1+3λ−3)
⇒x2−2λ+2=y2+λ+1=z2−3λ=2−34λ
∴ 20mmx2=32λ,y2=1−37λ,+2=z2=2+35λ
⇒ 20mmλ=2/3x2−0,=1−−7/3y2−1,=+5/3z2−2
Hence, foot of perpendicular lie on
=2/3x=−7/3y−1=5/3z−2⇒2x=−7y−1=5z−2