Question
Question: Period of the given trigonometric function \(\tan x.\tan \left( {{{120}^0} - x} \right).\tan \left( ...
Period of the given trigonometric function tanx.tan(1200−x).tan(1200+x) is
(a)2π (b)3π (c)32π (d)π
Solution
Hint-In this question, we use the concept of periodic function. Periodic function is a function that repeats its values in regular intervals or periods. A function is said to be periodic if there exists a positive real number T, f(x+T)=f(x) and T is a period of function f(x).Period of such type of function, ag(bx+c)+d is ∣b∣T , where T is a fundamental period of g(x).
Complete step-by-step solution -
Let, f(x)=tanx.tan(1200−x).tan(1200+x)
Now, we use tanθ=cosθsinθ
⇒f(x)=tanx.(cos(1200−x).cos(1200+x)sin(1200−x).sin(1200+x))
Multiply by 2 in numerator and denominator,
⇒f(x)=tanx.(2cos(1200−x).cos(1200+x)2sin(1200−x).sin(1200+x))
Use trigonometric identity, 2sin(A+B)sin(A−B)=cos(2B)−cos(2A) and 2cos(A+B)cos(A−B)=cos(2A)−cos(2B).
⇒f(x)=tanx.(cos(2400)+cos(2x)cos(2x)−cos(2400))
We know, cos(2400)=cos(1800+600)=−cos(600)=2−1
Now use trigonometric identity, cos(2x)=cos2(x)−sin2(x) and sin2(x)+cos2(x)=1
⇒f(x)=tanx.(2(cos2x−sin2x)−(sin2x+cos2x)2(cos2x−sin2x)+sin2x+cos2x) ⇒f(x)=tanx.(cos2x−3sin2x3cos2x−sin2x)Divide by cos2x in numerator and denominator,
⇒f(x)=tanx.(1−3tan2x3−tan2x) ⇒f(x)=1−3tan2x3tanx−tan3xWe know, tan(3x)=1−3tan2x3tanx−tan3x
⇒f(x)=tan(3x)
We know tanx is a periodic function with fundamental period π .
Now, we find period of tan(3x) so we use ag(bx+c)+d is ∣b∣T where T is a fundamental period of g(x).
Fundamental period of f(x), T=π and value of b=3
Hence, period of f(x) is 3π
So, the correct option is (b).
Note-In such types of problems we use some important points to solve the question in an easy way like first we convert the question into simple forms like sine, cosine, tan etc. by using some trigonometric identities and then find the fundamental period of function.