Solveeit Logo

Question

Question: Period of the function \(\sin \sqrt{x}+\cos \sqrt{x}\) is \(\begin{aligned} & a)4{{\pi }^{2}}...

Period of the function sinx+cosx\sin \sqrt{x}+\cos \sqrt{x} is
a)4π2 b)2π c)1 d)does not exist \begin{aligned} & a)4{{\pi }^{2}} \\\ & b)\sqrt{2\pi } \\\ & c)1 \\\ & d)\text{does not exist} \\\ \end{aligned}

Explanation

Solution

Now we will first consider the function sinx\sin \sqrt{x} . let us assume the function is periodic and hence we get sinx+T=sinx\sin \sqrt{x+T}=\sin \sqrt{x} . Now substituting x = 0 and x = T we will get two equations. Dividing the two equations we will find an equation which is a contradictory statement. Hence we prove that the function sinx\sin \sqrt{x} is not periodic. Hence sinx+cosx\sin \sqrt{x}+\cos \sqrt{x} is also not periodic.

Complete step-by-step answer:
Now let us first consider the function sinx\sin \sqrt{x} .
Let us say that the function is periodic and the period is T.
Hence we can say that sinx+T=sinx\sin \sqrt{x+T}=\sin \sqrt{x}
Now substituting x = 0 we get
sinT=0............(1)\sin \sqrt{T}=0............\left( 1 \right)
Now we know that if sinx=0\sin x=0 then x=2nπx=2n\pi .
Hence we get T=2nπ..........(2)\sqrt{T}=2n\pi ..........\left( 2 \right)
Now again consider sinx+T=sinx\sin \sqrt{x+T}=\sin \sqrt{x} .
Now let us substitute x = T . Hence we get,
sinT+T=sinT\sin \sqrt{T+T}=\sin \sqrt{T}
Now from equation (1) we have sinT=0\sin \sqrt{T}=0 hence substituting this value in the equation we get,
sin2T=0\sin \sqrt{2T}=0
Now again we know that if sinx=0\sin x=0 then x=2nπx=2n\pi
Hence using this we can say that 2T=2mπ\sqrt{2T}=2m\pi
2T=2mπ............(3)\sqrt{2T}=2m\pi ............\left( 3 \right)
Now let us divide equation (3) by equation (2). Hence we get,
2TT=2mπ2nπ\dfrac{\sqrt{2T}}{\sqrt{T}}=\dfrac{2m\pi }{2n\pi }
2=mn\Rightarrow \sqrt{2}=\dfrac{m}{n}
Now we know that 2\sqrt{2} is irrational and hence cannot be written in the form of pq\dfrac{p}{q} .
Hence we arrive at a contradiction.
The contradiction arises because of our wrong assumption that sinx\sin \sqrt{x} is Periodic.
Hence we can say that the function sinx\sin \sqrt{x} is non periodic.
Now addition of any function to a non-periodic function is not periodic.
Hence we can say that sinx+cosx\sin \sqrt{x}+\cos \sqrt{x} is not a periodic function.

So, the correct answer is “Option d”.

Note: Now note that the domain of periodic function is always (,)\left( -\infty ,\infty \right) . In our case we have the domain of function is (0,)\left( 0,\infty \right) . Hence we can directly say that the function is not periodic. Now note that the converse of the statement is not true which means every function with domain (,)\left( -\infty ,\infty \right) is not periodic. Take y = x for example. The function has domain (,)\left( -\infty ,\infty \right) but is not periodic.