Solveeit Logo

Question

Question: Period of \(\sin\theta - \sqrt{3}\cos\theta\)is...

Period of sinθ3cosθ\sin\theta - \sqrt{3}\cos\thetais

A

π4\frac{\pi}{4}

B

π2\frac{\pi}{2}

C

π\pi

D

2π2\pi

Answer

2π2\pi

Explanation

Solution

sinθ3cosθ=2(12sinθ32.cosθ)=2sin(θπ3)\sin\theta - \sqrt{3}\cos\theta = 2\left( \frac{1}{2}\sin\theta - \frac{\sqrt{3}}{2}.\cos\theta \right) = 2\sin\left( \theta - \frac{\pi}{3} \right)

Hence period =2π= 2\pi.