Solveeit Logo

Question

Question: Period of \(\sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}+x \right)\) is \(\be...

Period of sin(π4x)sin(π4+x)\sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}+x \right) is
a)π2 b)π c)3π2 d)2π \begin{aligned} & a)\dfrac{\pi }{2} \\\ & b)\pi \\\ & c)\dfrac{3\pi }{2} \\\ & d)2\pi \\\ \end{aligned}

Explanation

Solution

Now first we will convert the given expression with the help of formula cos(CD)+cos(C+D)=2sinCsinD\cos \left( C-D \right)+\cos \left( C+D \right)=2\sin C\sin D . Now we know that cos(π2)=0\cos \left( \dfrac{\pi }{2} \right)=0 hence we will get a simplified equation in terms of cos. Now again we know that the period of functions of type acos(bx)a\cos \left( bx \right) is given by 2πb\dfrac{2\pi }{b} . Hence we can find the period of the given function.

Complete step-by-step answer:
First let us understand the term period. A periodic function is a function which repeats the same values at regular intervals. The distance between this repetition is called the period of function. For a periodic function we have f(x+T)=f(x)f\left( x+T \right)=f\left( x \right) where T is the period of function. Let us take an example to understand.
We know that sin(2π+θ)=sin(θ)\sin \left( 2\pi +\theta \right)=\sin \left( \theta \right) hence we can say that the period of the function sinθ\sin \theta is 2π2\pi .
Now consider the given function sin(π4x)sin(π4+x)\sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}+x \right) .
We know that cos(CD)+cos(C+D)=2sinCsinD\cos \left( C-D \right)+\cos \left( C+D \right)=2\sin C\sin D
Hence we can say that cos(CD)+cos(C+D)2=sinCsinD\dfrac{\cos \left( C-D \right)+\cos \left( C+D \right)}{2}=\sin C\sin D
Now comparing the given function with RHS of above equation we get C=(π4x)C=\left( \dfrac{\pi }{4}-x \right) D=(π4+x)D=\left( \dfrac{\pi }{4}+x \right) .
Hence we get,
sin(π4x)sin(π4+x)=cos((π4x)(π4+x))+cos((π4x)(π4+x))2\sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}+x \right)=\dfrac{\cos \left( \left( \dfrac{\pi }{4}-x \right)-\left( \dfrac{\pi }{4}+x \right) \right)+\cos \left( \left( \dfrac{\pi }{4}-x \right)-\left( \dfrac{\pi }{4}+x \right) \right)}{2}
Now opening the brackets we get,
sin(π4x)sin(π4+x)=cos(π4x+π4+x)+cos(π4xπ4x)2 sin(π4x)sin(π4+x)=cos(π2)+cos(2x)2 \begin{aligned} & \sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}+x \right)=\dfrac{\cos \left( \dfrac{\pi }{4}-x+\dfrac{\pi }{4}+x \right)+\cos \left( \dfrac{\pi }{4}-x-\dfrac{\pi }{4}-x \right)}{2} \\\ & \Rightarrow \sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}+x \right)=\dfrac{\cos \left( \dfrac{\pi }{2} \right)+\cos \left( -2x \right)}{2} \\\ \end{aligned}
Now we know that cosπ2=0\cos \dfrac{\pi }{2}=0 , using this we get and cos(x)=cos(x)\cos \left( -x \right)=\cos \left( x \right)
sin(π4x)sin(π4+x)=cos(2x)2...................(1)\sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}+x \right)=\dfrac{\cos \left( 2x \right)}{2}...................\left( 1 \right) .
Now for any function of the type acos(bx)a\cos \left( bx \right) the period is given by 2πb\dfrac{2\pi }{b} .
When we compare the expression cos(2x)2\dfrac{\cos \left( 2x \right)}{2} with acos(bx)a\cos \left( bx \right) we get a=12a=\dfrac{1}{2} and b = 2.
Hence we get the period of cos(2x)2\dfrac{\cos \left( 2x \right)}{2} is 2π2=π\dfrac{2\pi }{2}=\pi .
Hence from equation (1) we get the period of sin(π4x)sin(π4+x)\sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}+x \right) is π\pi .

So, the correct answer is “Option b”.

Note: Now note that the period is the shortest distance after which the function repeats itself. Hence even though we have sin(4π+x)=sinx\sin \left( 4\pi +x \right)=\sin x 4π4\pi is not the shortest distance and hence not the period of the function. Also note that for a function acos(bx)a\cos \left( bx \right) the period does not depend on amplitude a.