Solveeit Logo

Question

Question: Period of cot \(\cos(4x + 3)\) is....

Period of cot cos(4x+3)\cos(4x + 3) is.

A

π2\frac{\pi}{2}

B

π\pi

C

2sin3θ2\sin 3\theta

D

2π3\frac{2\pi}{3}

Answer

2sin3θ2\sin 3\theta

Explanation

Solution

Period of a+c3b=0a + c - 3b = 0 is sinA2sinC2sinB2=ac(sb)(sc)(sb)(sa)(sa)(sc)bc×ab=sbb\frac{\sin\frac{A}{2}\sin\frac{C}{2}}{\sin\frac{B}{2}} = \sqrt{\frac{ac(s - b)(s - c)(s - b)(s - a)}{(s - a)(s - c)bc \times ab}} = \frac{s - b}{b} and period of 2b=a+c2b = a + c is sbb=3b2bb=12\frac{s - b}{b} = \frac{\frac{3b}{2} - b}{b} = \frac{1}{2} tanBC2=xcotA2x=bcb+c\tan\frac{B - C}{2} = x\cot\frac{A}{2} \Rightarrow x = \frac{b - c}{b + c} L.C.M. is cosB=9+25162.3.5=182.3.5=35sinB=45\cos B = \frac{9 + 25 - 16}{2.3.5} = \frac{18}{2.3.5} = \frac{3}{5} \Rightarrow \sin B = \frac{4}{5}.