Solveeit Logo

Question

Question: Period of \(4\cos 3\theta\)is....

Period of 4cos3θ4\cos 3\thetais.

A

2π3\frac{2\pi}{3}

B

π3\frac{\pi}{3}

C

f(x)=sin4x+cos4xf(x) = \sin^{4}x + \cos^{4}x

D

(sin2x+cos2x)22sin2xcos2x(\sin^{2}x + \cos^{2}x)^{2} - 2\sin^{2}x\cos^{2}x

Answer

(sin2x+cos2x)22sin2xcos2x(\sin^{2}x + \cos^{2}x)^{2} - 2\sin^{2}x\cos^{2}x

Explanation

Solution

Period of =12k3[sin2A(sin2B+sin2C)+sin2B(sin2C+sin2A)= \frac{1}{2}k^{3}\lbrack\sin^{2}A(\sin 2B + \sin 2C) + \sin^{2}B(\sin 2C + \sin 2A) is +sin2C(sin2A+sin2B)]+ \sin^{2}C(\sin 2A + \sin 2B)\rbrack and period of =k3[sinAsinB(sinAcosB+cosAsinB)= k^{3}\lbrack\sin A\sin B(\sin A\cos B + \cos A\sin B) is +sinBsinC(sinBcosC+cosBsinC)+ \sin B\sin C(\sin B\cos C + \cos B\sin C). Therefore period of the expression is +sinCsinA(sinCcosA+cosCsinA)]+ \sin C\sin A(\sin C\cos A + \cos C\sin A)\rbrack.