Question
Question: Period of \(4\cos 3\theta\)is....
Period of 4cos3θis.
A
32π
B
3π
C
f(x)=sin4x+cos4x
D
(sin2x+cos2x)2−2sin2xcos2x
Answer
(sin2x+cos2x)2−2sin2xcos2x
Explanation
Solution
Period of =21k3[sin2A(sin2B+sin2C)+sin2B(sin2C+sin2A) is +sin2C(sin2A+sin2B)] and period of =k3[sinAsinB(sinAcosB+cosAsinB) is +sinBsinC(sinBcosC+cosBsinC). Therefore period of the expression is +sinCsinA(sinCcosA+cosCsinA)].