Solveeit Logo

Question

Question: Period of \(12\cot^{2}\theta - 31\cos ⥂ ec\theta + 32 = 0\)is....

Period of 12cot2θ31cosecθ+32=012\cot^{2}\theta - 31\cos ⥂ ec\theta + 32 = 0is.

A

12(cos⥂ec2θ1)31cos⥂ec θ+32=012(\text{cos} ⥂ \text{e}\text{c}^{2}\theta - 1) - 31\text{cos} ⥂ \text{ec }\theta + \text{32} = 0

B

12cos⥂ec2θ31cos⥂ec θ+20=012\text{cos} ⥂ \text{e}\text{c}^{2}\theta - 31\text{cos} ⥂ \text{ec }\theta + \text{20} = 0

C

12cos⥂ec2θ16cos⥂ec θ15cos⥂ecθ+20=012\text{cos} ⥂ \text{e}\text{c}^{2}\theta - 16\text{cos} ⥂ \text{ec }\theta - 15\text{cos} ⥂ \text{ec}\theta + 20 = 0

D

None of these

Answer

12cos⥂ec2θ31cos⥂ec θ+20=012\text{cos} ⥂ \text{e}\text{c}^{2}\theta - 31\text{cos} ⥂ \text{ec }\theta + \text{20} = 0

Explanation

Solution

Since cos2A+cos2C=cos2A+cos2(π2A)\cos^{2}A + \cos^{2}C = \cos^{2}A + \cos^{2}\left( \frac{\pi}{2} - A \right). Hence period = =cos2A+sin2A=1= \cos^{2}A + \sin^{2}A = 1.