Solveeit Logo

Question

Question: Some pieces of impurity (density =$\rho$) is embedded in ice. This ice is floating in water. (densit...

Some pieces of impurity (density =ρ\rho) is embedded in ice. This ice is floating in water. (density =ρw\rho_w). When ice melts, level of water will

A

fall if ρ>ρw\rho > \rho_w

B

fall if ρ<ρw\rho <\rho_w

C

remain unchanged, if ρ<ρw\rho < \rho_w

D

rise if ρ>ρw\rho > \rho_w

Answer

fall if ρ>ρw\rho > \rho_w

Explanation

Solution

Let micem_{ice} be the mass of pure ice and mimpm_{imp} be the mass of impurity. Let ViceV_{ice} be the volume of pure ice and VimpV_{imp} be the volume of impurity. The total mass of the ice block is M=mice+mimpM = m_{ice} + m_{imp}. When floating, the volume of displaced water is Vsubmerged=Mρw=mice+mimpρwV_{submerged} = \frac{M}{\rho_w} = \frac{m_{ice} + m_{imp}}{\rho_w}. When melted, the ice forms water of volume Vmelted_ice=miceρwV_{melted\_ice} = \frac{m_{ice}}{\rho_w}. The impurity occupies volume Vimp_final=mimpρV_{imp\_final} = \frac{m_{imp}}{\rho}. The total volume after melting is Vfinal=miceρw+mimpρV_{final} = \frac{m_{ice}}{\rho_w} + \frac{m_{imp}}{\rho}. The change in volume is ΔV=VfinalVsubmerged=(miceρw+mimpρ)mice+mimpρw=mimp(1ρ1ρw)=mimpρwρρρw\Delta V = V_{final} - V_{submerged} = \left(\frac{m_{ice}}{\rho_w} + \frac{m_{imp}}{\rho}\right) - \frac{m_{ice} + m_{imp}}{\rho_w} = m_{imp} \left(\frac{1}{\rho} - \frac{1}{\rho_w}\right) = m_{imp} \frac{\rho_w - \rho}{\rho \rho_w}. If ρ>ρw\rho > \rho_w, then ΔV<0\Delta V < 0, so the water level falls. If ρ<ρw\rho < \rho_w, then ΔV>0\Delta V > 0, so the water level rises. If ρ=ρw\rho = \rho_w, then ΔV=0\Delta V = 0, so the water level remains unchanged.