Solveeit Logo

Question

Question: Let the two foci of an ellipse be (-1,0) and (3, 4) and the foot of perpendicular from the focus (3,...

Let the two foci of an ellipse be (-1,0) and (3, 4) and the foot of perpendicular from the focus (3, 4) upon a tangent to the ellipse be (4,6).

A

x² + y² - 2x - 4y - 5 = 0

B

x² + y² - 2x - 4y - 20 = 0

C

x² + y² + 2x + 4y - 20 = 0

D

x² + y² + 2x + 4y - 5 = 0

Answer

x² + y² - 2x - 4y - 20 = 0

Explanation

Solution

  1. Center of the ellipse (C): The center is the midpoint of the foci F1(1,0)F_1(-1, 0) and F2(3,4)F_2(3, 4). C=(1+32,0+42)=(1,2)C = \left(\frac{-1+3}{2}, \frac{0+4}{2}\right) = (1, 2).
  2. Radius of the auxiliary circle (a): The foot of the perpendicular from a focus to a tangent lies on the auxiliary circle. Thus, P(4,6)P(4, 6) lies on the auxiliary circle centered at C(1,2)C(1, 2). The radius of the auxiliary circle is aa. a=CP=(41)2+(62)2=32+42=9+16=25=5a = CP = \sqrt{(4-1)^2 + (6-2)^2} = \sqrt{3^2 + 4^2} = \sqrt{9+16} = \sqrt{25} = 5.
  3. Equation of the auxiliary circle: With center C(1,2)C(1, 2) and radius a=5a=5, the equation is: (x1)2+(y2)2=52(x-1)^2 + (y-2)^2 = 5^2 x22x+1+y24y+4=25x^2 - 2x + 1 + y^2 - 4y + 4 = 25 x2+y22x4y20=0x^2 + y^2 - 2x - 4y - 20 = 0.