Solveeit Logo

Question

Question: Passengers in the jet transport A flying east at a speed of \[800km/h\] observe a second jet plane B...

Passengers in the jet transport A flying east at a speed of 800km/h800km/h observe a second jet plane B that passes under the transport in horizontal flight. Although the nose of B is pointed in the 4545{}^\circ north east direction, plane B appears to the passengers in A to be moving away from the transport at the 6060{}^\circ angle as shown. The true velocity of B is :

& A)586km/h \\\ & B)400\sqrt{2}km/h \\\ & C)717km/h \\\ & D)400km/h \\\ \end{aligned}$$
Explanation

Solution

The magnitude and direction of velocity of plane A and direction of plane B are given. From this relative velocity of plane B with respect to A can be determined. Using these three velocities a vector diagram can be drawn. Using Lami’s theorem, we can equate these velocities and thereby we can determine the velocity of plane B.
Formula used:
vB/A=vBvA{{\vec{v}}_{B/A}}={{\vec{v}}_{B}}-{{\vec{v}}_{A}}
vAsin75=vBsin60=vB/Asin45\dfrac{{{{\vec{v}}}_{A}}}{\sin 75}=\dfrac{{{{\vec{v}}}_{B}}}{\sin 60}=\dfrac{{{{\vec{v}}}_{B/A}}}{\sin 45}

Complete step by step solution:
The relative velocity of B with respect to A is given by,
vB/A=vBvA{{\vec{v}}_{B/A}}={{\vec{v}}_{B}}-{{\vec{v}}_{A}}
Where,
vA{{\vec{v}}_{A}}is the velocity of Plane A
vB{{\vec{v}}_{B}}is the velocity of Plane B
The vectors vB/A{{\vec{v}}_{B/A}}, vB{{\vec{v}}_{B}}and vA{{\vec{v}}_{A}} make a triangle.

Given,
Velocity of plane A,vA=800i^{{v}_{A}}=800\hat{i}
According to Lami’s theorem,
vAsin75=vBsin60=vB/Asin45\dfrac{{{{\vec{v}}}_{A}}}{\sin 75}=\dfrac{{{{\vec{v}}}_{B}}}{\sin 60}=\dfrac{{{{\vec{v}}}_{B/A}}}{\sin 45}
We have,
vB/A=vBvA{{\vec{v}}_{B/A}}={{\vec{v}}_{B}}-{{\vec{v}}_{A}}
Substitute it in above equation , we get,
vAsin75=vBsin60=vBvAsin45\dfrac{{{{\vec{v}}}_{A}}}{\sin 75}=\dfrac{{{{\vec{v}}}_{B}}}{\sin 60}=\dfrac{{{{\vec{v}}}_{B}}-{{{\vec{v}}}_{A}}}{\sin 45}
Then,
vAsin75=vBsin60\dfrac{{{{\vec{v}}}_{A}}}{\sin 75}=\dfrac{{{{\vec{v}}}_{B}}}{\sin 60}
Substitute the value of vA{{\vec{v}}_{A}}in the above equation
vB=800×sin60sin75=717km/h{{\vec{v}}_{B}}=800\times \dfrac{\sin 60}{\sin 75}=717km/h

Therefore, the answer is option C.

Note:
Lami’s theorem relates the magnitudes of three concurrent, non-collinear and coplanar which keeps an object in static equilibrium, with the angles directly opposite to the corresponding vectors. According to the theorem,
Asinα=Bsinβ=Csinγ\dfrac{A}{\sin \alpha }=\dfrac{B}{\sin \beta }=\dfrac{C}{\sin \gamma }
Where A, B and C are the magnitudes of the three concurrent coplanar and noncollinear vectors vA{{\vec{v}}_{A}}, vB{{\vec{v}}_{B}} and vC{{\vec{v}}_{C}}and α, β and γ are the angles directly opposite to the vectors.