Solveeit Logo

Question

Question: Passage-II: Consider the following functions ({x} = x - max{a ∈ Z: a ≤ x}) $$ f(x) = \begin{cases} ...

Passage-II: Consider the following functions ({x} = x - max{a ∈ Z: a ≤ x})

f(x)={ln(1+x+(b2)x+1)+atan1x+2,2<x<0b,x=0e2xeln(4x2)+(c+2)sin1{x}x20<x<2andf(x) = \begin{cases} \ln(1+|x|+(b-2)|x+1|)+atan^{-1}x+2, & -2 < x < 0 \\ b, & x = 0 \\ \frac{e^{2x} - e^{\ln(4^{\frac{x}{2}})} + (c+2)\sin^{-1}\sqrt{\{x\}}}{x^2} & 0 < x < 2 \end{cases} \text{and} g(x)={ln(1+2x)x,12<x<02cosx,x=0e2x1x,0<x<1xe21,x1g(x) = \begin{cases} \frac{\ln(1+2x)}{x}, & -\frac{1}{2} < x < 0 \\ 2\cos x, & x = 0 \\ \frac{e^{2x} - 1}{x}, & 0 < x < 1 \\ \frac{x}{e^2 - 1}, & x \geq 1 \end{cases}

Now, based on above information, answer the following questions

Q.(19) Let m be number of points where g is dis-continuous and n be number of points where g is non-differentiable, then m + n is equal to

Answer

3

Explanation

Solution

Let's analyze the function g(x) to determine the number of points where it is discontinuous (m) and non-differentiable (n).

Function g(x):

g(x)={ln(1+2x)x,12<x<02cosx,x=0e2x1x,0<x<1xe21,x1g(x) = \begin{cases} \frac{\ln(1+2x)}{x}, & -\frac{1}{2} < x < 0 \\ 2\cos x, & x = 0 \\ \frac{e^{2x} - 1}{x}, & 0 < x < 1 \\ \frac{x}{e^2 - 1}, & x \geq 1 \end{cases}

Continuity Check:

We need to check continuity at the points where the definition of g(x) changes, which are x = 0 and x = 1.

  • At x = 0:

    • Left-hand limit: limx0g(x)=limx0ln(1+2x)x\lim_{x \to 0^-} g(x) = \lim_{x \to 0^-} \frac{\ln(1+2x)}{x}. Using L'Hôpital's rule or the standard limit limu0ln(1+u)u=1\lim_{u \to 0} \frac{\ln(1+u)}{u} = 1, we have limx0ln(1+2x)x=2\lim_{x \to 0^-} \frac{\ln(1+2x)}{x} = 2.
    • Function value at x = 0: g(0)=2cos(0)=2g(0) = 2\cos(0) = 2.
    • Right-hand limit: limx0+g(x)=limx0+e2x1x\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} \frac{e^{2x} - 1}{x}. Using L'Hôpital's rule or the standard limit limu0eu1u=1\lim_{u \to 0} \frac{e^u - 1}{u} = 1, we have limx0+e2x1x=2\lim_{x \to 0^+} \frac{e^{2x} - 1}{x} = 2.

    Since limx0g(x)=g(0)=limx0+g(x)=2\lim_{x \to 0^-} g(x) = g(0) = \lim_{x \to 0^+} g(x) = 2, g(x) is continuous at x = 0.

  • At x = 1:

    • Left-hand limit: limx1g(x)=limx1e2x1x=e211=e21\lim_{x \to 1^-} g(x) = \lim_{x \to 1^-} \frac{e^{2x} - 1}{x} = \frac{e^2 - 1}{1} = e^2 - 1.
    • Function value at x = 1: g(1)=1e21g(1) = \frac{1}{e^2 - 1}.
    • Right-hand limit: limx1+g(x)=limx1+xe21=1e21\lim_{x \to 1^+} g(x) = \lim_{x \to 1^+} \frac{x}{e^2 - 1} = \frac{1}{e^2 - 1}.

    Since limx1g(x)=e21\lim_{x \to 1^-} g(x) = e^2 - 1 and limx1+g(x)=g(1)=1e21\lim_{x \to 1^+} g(x) = g(1) = \frac{1}{e^2 - 1}, and e211e21e^2 - 1 \neq \frac{1}{e^2 - 1}, g(x) is discontinuous at x = 1.

Therefore, the number of points where g(x) is discontinuous is m = 1.

Differentiability Check:

  • At x = 0:

    We need to check if the left and right derivatives at x = 0 are equal.

    • Left derivative: For x<0x < 0, g(x)=ln(1+2x)xg(x) = \frac{\ln(1+2x)}{x}. Using the quotient rule, g(x)=21+2xxln(1+2x)x2=2x(1+2x)ln(1+2x)x2(1+2x)g'(x) = \frac{\frac{2}{1+2x} \cdot x - \ln(1+2x)}{x^2} = \frac{2x - (1+2x)\ln(1+2x)}{x^2(1+2x)}. Then g(0)=limx02x(1+2x)ln(1+2x)x2(1+2x)g'(0^-) = \lim_{x \to 0^-} \frac{2x - (1+2x)\ln(1+2x)}{x^2(1+2x)}. Using Taylor series or L'Hôpital's rule (twice), we find g(0)=2g'(0^-) = -2.

    • Right derivative: For x>0x > 0, g(x)=e2x1xg(x) = \frac{e^{2x} - 1}{x}. Using the quotient rule, g(x)=2e2xx(e2x1)x2=2xe2xe2x+1x2g'(x) = \frac{2e^{2x} \cdot x - (e^{2x} - 1)}{x^2} = \frac{2xe^{2x} - e^{2x} + 1}{x^2}. Then g(0+)=limx0+2xe2xe2x+1x2g'(0^+) = \lim_{x \to 0^+} \frac{2xe^{2x} - e^{2x} + 1}{x^2}. Using Taylor series or L'Hôpital's rule (twice), we find g(0+)=2g'(0^+) = 2.

    Since g(0)=2g'(0^-) = -2 and g(0+)=2g'(0^+) = 2, the left and right derivatives are not equal, so g(x) is not differentiable at x = 0.

  • At x = 1:

    Since g(x) is discontinuous at x = 1, it is not differentiable at x = 1.

Therefore, the number of points where g(x) is non-differentiable is n = 2 (at x = 0 and x = 1).

Finally, m + n = 1 + 2 = 3.

Thus, m + n = 3.