Solveeit Logo

Question

Question: Let a and b be real numbers greater than 1 for which there exists a positive real number c, differen...

Let a and b be real numbers greater than 1 for which there exists a positive real number c, different from 1, such that 2(logac+logbc)=9logabc2(log_a c + log_b c) = 9log_{ab}c, then the possible value of logablog_a b.

A

1/2

B

3

C

1/3

D

2

Answer

1/2, 2

Explanation

Solution

The given equation is 2(logac+logbc)=9logabc2(\log_a c + \log_b c) = 9\log_{ab}c. We are given that a,b>1a, b > 1 and c>0,c1c > 0, c \neq 1. We need to find the possible value(s) of logab\log_a b.

  1. Use the change of base formula for logarithms: logxy=1logyx\log_x y = \frac{1}{\log_y x}. Applying this to all terms with base cc: logac=1logca\log_a c = \frac{1}{\log_c a} logbc=1logcb\log_b c = \frac{1}{\log_c b} logabc=1logc(ab)\log_{ab} c = \frac{1}{\log_c (ab)}

  2. Substitute these expressions into the given equation: 2(1logca+1logcb)=9logc(ab)2\left(\frac{1}{\log_c a} + \frac{1}{\log_c b}\right) = \frac{9}{\log_c (ab)}

  3. Simplify the left side of the equation: 2(logcb+logcalogcalogcb)=9logc(ab)2\left(\frac{\log_c b + \log_c a}{\log_c a \cdot \log_c b}\right) = \frac{9}{\log_c (ab)}

  4. Use the logarithm property logxM+logxN=logx(MN)\log_x M + \log_x N = \log_x (MN). So, logca+logcb=logc(ab)\log_c a + \log_c b = \log_c (ab). Substitute this into the equation: 2(logc(ab)logcalogcb)=9logc(ab)2\left(\frac{\log_c (ab)}{\log_c a \cdot \log_c b}\right) = \frac{9}{\log_c (ab)}

  5. Let x=logcax = \log_c a and y=logcby = \log_c b. The equation becomes: 2(x+yxy)=9x+y2\left(\frac{x+y}{xy}\right) = \frac{9}{x+y}

  6. Cross-multiply and rearrange the terms: 2(x+y)2=9xy2(x+y)^2 = 9xy 2x25xy+2y2=02x^2 - 5xy + 2y^2 = 0

  7. We want to find logab=logcblogca=yx\log_a b = \frac{\log_c b}{\log_c a} = \frac{y}{x}. Divide the entire equation by x2x^2: 25(yx)+2(yx)2=02 - 5\left(\frac{y}{x}\right) + 2\left(\frac{y}{x}\right)^2 = 0

  8. Let k=yx=logabk = \frac{y}{x} = \log_a b. The equation becomes: 2k25k+2=02k^2 - 5k + 2 = 0

  9. Solve the quadratic equation for kk: (2k1)(k2)=0(2k-1)(k-2) = 0 This gives two possible values for kk: k=12k = \frac{1}{2} and k=2k = 2.

Thus, the possible values of logab\log_a b are 1/21/2 and 22.