Solveeit Logo

Question

Question: The surface energy of a liquid drop is u. it is spreaed in 106 equal droplets. Then its surface ener...

The surface energy of a liquid drop is u. it is spreaed in 106 equal droplets. Then its surface energy becomes: एक द्रव बुंद की पृष्ठ ऊर्जा है। इससे 106 बराबर त्रिज्या की बूंदे बना दी जायें तो इसकी पृष्ठ ऊर्जा हो जायेगीः-

A

u

B

100u

C

10000u

D

106u

Answer

100u

Explanation

Solution

The problem involves the change in surface energy when a large liquid drop breaks into smaller droplets. The key principles are the conservation of volume and the definition of surface energy.

Let:

  • RR be the radius of the initial large liquid drop.
  • rr be the radius of each small droplet.
  • σ\sigma be the surface tension of the liquid.
  • NN be the number of equal droplets.

Given:

  • Initial surface energy of the large drop = uu.
  • Number of equal droplets = 10610^6.

1. Initial Surface Energy: The surface area of the initial large drop is Ainitial=4πR2A_{initial} = 4\pi R^2. The initial surface energy is given by: u=σ×Ainitial=σ(4πR2)u = \sigma \times A_{initial} = \sigma (4\pi R^2) --- (1)

2. Conservation of Volume: When the large drop breaks into NN smaller droplets, the total volume of the liquid remains constant. Volume of large drop = N×N \times Volume of one small droplet 43πR3=N×43πr3\frac{4}{3}\pi R^3 = N \times \frac{4}{3}\pi r^3 R3=Nr3R^3 = N r^3 From this, we can express rr in terms of RR and NN: r=RN1/3r = \frac{R}{N^{1/3}} --- (2)

3. Final Surface Energy: The total surface area of the NN small droplets is Afinal=N×(4πr2)A_{final} = N \times (4\pi r^2). The final surface energy, ufinalu_{final}, is: ufinal=σ×Afinal=σ×N(4πr2)u_{final} = \sigma \times A_{final} = \sigma \times N (4\pi r^2) --- (3)

4. Substitute and Simplify: Substitute the expression for rr from equation (2) into equation (3): ufinal=σ×N(4π(RN1/3)2)u_{final} = \sigma \times N \left(4\pi \left(\frac{R}{N^{1/3}}\right)^2\right) ufinal=σ×N(4πR2N2/3)u_{final} = \sigma \times N \left(4\pi \frac{R^2}{N^{2/3}}\right) Rearrange the terms: ufinal=σ(4πR2)×NN2/3u_{final} = \sigma (4\pi R^2) \times \frac{N}{N^{2/3}} ufinal=σ(4πR2)×N(12/3)u_{final} = \sigma (4\pi R^2) \times N^{(1 - 2/3)} ufinal=σ(4πR2)×N1/3u_{final} = \sigma (4\pi R^2) \times N^{1/3}

5. Relate to Initial Surface Energy: From equation (1), we know that u=σ(4πR2)u = \sigma (4\pi R^2). Substitute this into the expression for ufinalu_{final}: ufinal=u×N1/3u_{final} = u \times N^{1/3}

6. Calculate for N=106N = 10^6: Given the options, we assume N=106N = 10^6. ufinal=u×(106)1/3u_{final} = u \times (10^6)^{1/3} ufinal=u×10(6×1/3)u_{final} = u \times 10^{(6 \times 1/3)} ufinal=u×102u_{final} = u \times 10^2 ufinal=100uu_{final} = 100u

Thus, if the liquid drop is spread into 10610^6 equal droplets, its surface energy becomes 100u100u.