Question
Question: Reduction formulas can be used to compute integrals of higher power of sin *x*, cos *x*, tan *x* etc...
Reduction formulas can be used to compute integrals of higher power of sin x, cos x, tan x etc. ∫sec6xdx=51tan5x+Atan3x+tanx+C, then:

A
A=31
B
A=32
C
A=−31
D
A=−32
Answer
A=32
Explanation
Solution
- Rewrite the integral: ∫sec6xdx=∫sec4x⋅sec2xdx.
- Use the identity sec2x=1+tan2x: ∫(1+tan2x)2⋅sec2xdx.
- Substitute u=tanx, so du=sec2xdx. The integral becomes ∫(1+u2)2du.
- Expand the integrand: ∫(1+2u2+u4)du.
- Integrate term by term: u+32u3+5u5+C.
- Substitute back u=tanx: tanx+32tan3x+51tan5x+C.
- Compare this result with the given expression 51tan5x+Atan3x+tanx+C.
- Equating the coefficients of tan3x, we get A=32.