Solveeit Logo

Question

Question: Reduction formulas can be used to compute integrals of higher power of sin *x*, cos *x*, tan *x* etc...

Reduction formulas can be used to compute integrals of higher power of sin x, cos x, tan x etc. sec6xdx=15tan5x+Atan3x+tanx+C\int sec^6 x dx = \frac{1}{5}tan^5 x + A tan^3 x + tan x + C, then:

A

A=13A = \frac{1}{3}

B

A=23A = \frac{2}{3}

C

A=13A = -\frac{1}{3}

D

A=23A = -\frac{2}{3}

Answer

A=23A = \frac{2}{3}

Explanation

Solution

  1. Rewrite the integral: sec6xdx=sec4xsec2xdx\int sec^6 x dx = \int sec^4 x \cdot sec^2 x dx.
  2. Use the identity sec2x=1+tan2xsec^2 x = 1 + tan^2 x: (1+tan2x)2sec2xdx\int (1 + tan^2 x)^2 \cdot sec^2 x dx.
  3. Substitute u=tanxu = tan x, so du=sec2xdxdu = sec^2 x dx. The integral becomes (1+u2)2du\int (1 + u^2)^2 du.
  4. Expand the integrand: (1+2u2+u4)du\int (1 + 2u^2 + u^4) du.
  5. Integrate term by term: u+2u33+u55+Cu + \frac{2u^3}{3} + \frac{u^5}{5} + C.
  6. Substitute back u=tanxu = tan x: tanx+23tan3x+15tan5x+Ctan x + \frac{2}{3} tan^3 x + \frac{1}{5} tan^5 x + C.
  7. Compare this result with the given expression 15tan5x+Atan3x+tanx+C\frac{1}{5}tan^5 x + A tan^3 x + tan x + C.
  8. Equating the coefficients of tan3xtan^3 x, we get A=23A = \frac{2}{3}.