Solveeit Logo

Question

Question: If $(x+a)^n = \sum_{k=0}^{n} {n \choose k} x^{n-k} a^k$. Let $a_k = k {10 \choose k}$, $b_k = (10-k)...

If (x+a)n=k=0n(nk)xnkak(x+a)^n = \sum_{k=0}^{n} {n \choose k} x^{n-k} a^k. Let ak=k(10k)a_k = k {10 \choose k}, bk=(10k)(10k)b_k = (10-k) {10 \choose k} and Ak=[ak0bk0]A_k = \begin{bmatrix} a_k & 0 \\ b_k & 0 \end{bmatrix}. If A=k=09Ak=[a0b0]A = \sum_{k=0}^{9} A_k = \begin{bmatrix} a & 0 \\ b & 0 \end{bmatrix}.

Find the sum of digits of trace of the matrix A

Answer

6

Explanation

Solution

We are given, for each kk (where 0k90 \le k \le 9):

ak=k(10k),bk=(10k)(10k)a_k = k \binom{10}{k},\quad b_k = (10-k) \binom{10}{k}

The matrices are:

Ak=(ak0bk0)A_k = \begin{pmatrix} a_k & 0 \\ b_k & 0 \end{pmatrix}

The matrix AA is the sum of these matrices:

A=k=09Ak=(a0b0)witha=k=09ak,b=k=09bk.A = \sum_{k=0}^{9} A_k = \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \quad \text{with} \quad a = \sum_{k=0}^{9} a_k,\quad b = \sum_{k=0}^{9} b_k.

The trace of AA is the sum of its diagonal entries:

trace(A)=a+b.\text{trace}(A) = a + b.

Notice that for each kk:

ak+bk=[k+(10k)](10k)=10(10k).a_k + b_k = \left[k + (10-k)\right] \binom{10}{k} = 10 \binom{10}{k}.

Thus,

a+b=k=09(ak+bk)=k=0910(10k)=10k=09(10k).a + b = \sum_{k=0}^{9} (a_k + b_k) = \sum_{k=0}^{9} 10 \binom{10}{k} = 10 \sum_{k=0}^{9} \binom{10}{k}.

Using the binomial theorem, we know:

k=010(10k)=210=1024.\sum_{k=0}^{10} \binom{10}{k} = 2^{10} = 1024.

Since the sum in our case is only from k=0k=0 to k=9k=9, we subtract the k=10k = 10 term:

k=09(10k)=1024(1010)=10241=1023.\sum_{k=0}^{9} \binom{10}{k} = 1024 - \binom{10}{10} = 1024 - 1 = 1023.

Thus,

trace(A)=10×1023=10230.\text{trace}(A) = 10 \times 1023 = 10230.

Finally, the sum of the digits of 1023010230 is:

1+0+2+3+0=6.1 + 0 + 2 + 3 + 0 = 6.