Question
Question: If $(x+a)^n = \sum_{k=0}^{n} {n \choose k} x^{n-k} a^k$. Let $a_k = k {10 \choose k}$, $b_k = (10-k)...
If (x+a)n=∑k=0n(kn)xn−kak. Let ak=k(k10), bk=(10−k)(k10) and Ak=[akbk00]. If A=∑k=09Ak=[ab00].
Find the sum of digits of trace of the matrix A
Answer
6
Explanation
Solution
We are given, for each k (where 0≤k≤9):
ak=k(k10),bk=(10−k)(k10)The matrices are:
Ak=(akbk00)The matrix A is the sum of these matrices:
A=k=0∑9Ak=(ab00)witha=k=0∑9ak,b=k=0∑9bk.The trace of A is the sum of its diagonal entries:
trace(A)=a+b.Notice that for each k:
ak+bk=[k+(10−k)](k10)=10(k10).Thus,
a+b=k=0∑9(ak+bk)=k=0∑910(k10)=10k=0∑9(k10).Using the binomial theorem, we know:
k=0∑10(k10)=210=1024.Since the sum in our case is only from k=0 to k=9, we subtract the k=10 term:
k=0∑9(k10)=1024−(1010)=1024−1=1023.Thus,
trace(A)=10×1023=10230.Finally, the sum of the digits of 10230 is:
1+0+2+3+0=6.