Solveeit Logo

Question

Question: If $f(x) = \frac{x}{x^2+x+1}$, then If $\int f(\tan x)dx = x - \frac{2}{\sqrt{3}} \tan^{-1}(g(x)) +...

If f(x)=xx2+x+1f(x) = \frac{x}{x^2+x+1}, then

If f(tanx)dx=x23tan1(g(x))+c\int f(\tan x)dx = x - \frac{2}{\sqrt{3}} \tan^{-1}(g(x)) + c, then for x(π3,π3)x \in (-\frac{\pi}{3}, \frac{\pi}{3}) range of g(x)g(x) is -

A

(132,13+2)(\frac{1}{\sqrt{3}}-2, \frac{1}{\sqrt{3}}+2)

B

(3,3)(-\sqrt{3}, \sqrt{3})

C

(343,34+3)(-\frac{\sqrt{3}}{4-\sqrt{3}}, \frac{\sqrt{3}}{4+\sqrt{3}})

D

none of these

Answer

(132,13+2)(\frac{1}{\sqrt{3}}-2, \frac{1}{\sqrt{3}}+2)

Explanation

Solution

The given function is f(x)=xx2+x+1f(x) = \frac{x}{x^2+x+1}. We are given the integral equation f(tanx)dx=x23tan1(g(x))+c\int f(\tan x)dx = x - \frac{2}{\sqrt{3}} \tan^{-1}(g(x)) + c. Substitute xx with tanx\tan x in f(x)f(x): f(tanx)=tanx(tanx)2+tanx+1=tanxtan2x+tanx+1f(\tan x) = \frac{\tan x}{(\tan x)^2 + \tan x + 1} = \frac{\tan x}{\tan^2 x + \tan x + 1}.

Differentiate the given integral equation with respect to xx: ddx(f(tanx)dx)=ddx(x23tan1(g(x))+c)\frac{d}{dx} \left( \int f(\tan x)dx \right) = \frac{d}{dx} \left( x - \frac{2}{\sqrt{3}} \tan^{-1}(g(x)) + c \right) f(tanx)=12311+(g(x))2g(x)f(\tan x) = 1 - \frac{2}{\sqrt{3}} \frac{1}{1+(g(x))^2} g'(x) tanxtan2x+tanx+1=123g(x)1+(g(x))2\frac{\tan x}{\tan^2 x + \tan x + 1} = 1 - \frac{2}{\sqrt{3}} \frac{g'(x)}{1+(g(x))^2} 23g(x)1+(g(x))2=1tanxtan2x+tanx+1=tan2x+tanx+1tanxtan2x+tanx+1=tan2x+1tan2x+tanx+1=sec2xtan2x+tanx+1\frac{2}{\sqrt{3}} \frac{g'(x)}{1+(g(x))^2} = 1 - \frac{\tan x}{\tan^2 x + \tan x + 1} = \frac{\tan^2 x + \tan x + 1 - \tan x}{\tan^2 x + \tan x + 1} = \frac{\tan^2 x + 1}{\tan^2 x + \tan x + 1} = \frac{\sec^2 x}{\tan^2 x + \tan x + 1}. g(x)1+(g(x))2=32sec2xtan2x+tanx+1\frac{g'(x)}{1+(g(x))^2} = \frac{\sqrt{3}}{2} \frac{\sec^2 x}{\tan^2 x + \tan x + 1}.

We know that ddxtan1(h(x))=h(x)1+(h(x))2\frac{d}{dx} \tan^{-1}(h(x)) = \frac{h'(x)}{1+(h(x))^2}. We need to find g(x)g(x) such that g(x)1+(g(x))2\frac{g'(x)}{1+(g(x))^2} matches the expression on the right-hand side. Consider the denominator tan2x+tanx+1\tan^2 x + \tan x + 1. We can complete the square for tanx\tan x: tan2x+tanx+1=(tanx+12)2+114=(tanx+12)2+34\tan^2 x + \tan x + 1 = (\tan x + \frac{1}{2})^2 + 1 - \frac{1}{4} = (\tan x + \frac{1}{2})^2 + \frac{3}{4}. So, sec2xtan2x+tanx+1=sec2x(tanx+12)2+34\frac{\sec^2 x}{\tan^2 x + \tan x + 1} = \frac{\sec^2 x}{(\tan x + \frac{1}{2})^2 + \frac{3}{4}}. We want to express this in the form h(x)1+y2\frac{h'(x)}{1+y^2}: (tanx+12)2+34=34[(tanx+12)234+1]=34[(tanx+1232)2+1]=34[(2tanx+13)2+1](\tan x + \frac{1}{2})^2 + \frac{3}{4} = \frac{3}{4} \left[ \frac{(\tan x + \frac{1}{2})^2}{\frac{3}{4}} + 1 \right] = \frac{3}{4} \left[ \left( \frac{\tan x + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right)^2 + 1 \right] = \frac{3}{4} \left[ \left( \frac{2 \tan x + 1}{\sqrt{3}} \right)^2 + 1 \right]. So, sec2xtan2x+tanx+1=sec2x34[(2tanx+13)2+1]=43sec2x1+(2tanx+13)2\frac{\sec^2 x}{\tan^2 x + \tan x + 1} = \frac{\sec^2 x}{\frac{3}{4} \left[ \left( \frac{2 \tan x + 1}{\sqrt{3}} \right)^2 + 1 \right]} = \frac{4}{3} \frac{\sec^2 x}{1 + \left( \frac{2 \tan x + 1}{\sqrt{3}} \right)^2}.

Now substitute this back into the equation for g(x)1+(g(x))2\frac{g'(x)}{1+(g(x))^2}: g(x)1+(g(x))2=3243sec2x1+(2tanx+13)2=23sec2x1+(2tanx+13)2\frac{g'(x)}{1+(g(x))^2} = \frac{\sqrt{3}}{2} \cdot \frac{4}{3} \frac{\sec^2 x}{1 + \left( \frac{2 \tan x + 1}{\sqrt{3}} \right)^2} = \frac{2}{\sqrt{3}} \frac{\sec^2 x}{1 + \left( \frac{2 \tan x + 1}{\sqrt{3}} \right)^2}.

Consider the function h(x)=2tanx+13h(x) = \frac{2 \tan x + 1}{\sqrt{3}}. Its derivative is h(x)=2sec2x3h'(x) = \frac{2 \sec^2 x}{\sqrt{3}}. Then h(x)1+(h(x))2=2sec2x31+(2tanx+13)2=23sec2x1+(2tanx+13)2\frac{h'(x)}{1+(h(x))^2} = \frac{\frac{2 \sec^2 x}{\sqrt{3}}}{1 + \left( \frac{2 \tan x + 1}{\sqrt{3}} \right)^2} = \frac{2}{\sqrt{3}} \frac{\sec^2 x}{1 + \left( \frac{2 \tan x + 1}{\sqrt{3}} \right)^2}. This matches the expression for g(x)1+(g(x))2\frac{g'(x)}{1+(g(x))^2}. This implies that g(x)g(x) is proportional to h(x)h(x) or g(x)g(x) is h(x)h(x) plus a constant. However, the form of the integral suggests g(x)g(x) is exactly h(x)h(x). Let's verify the integral by integrating 23sec2x1+(2tanx+13)2\frac{2}{\sqrt{3}} \frac{\sec^2 x}{1 + \left( \frac{2 \tan x + 1}{\sqrt{3}} \right)^2}. Let u=2tanx+13u = \frac{2 \tan x + 1}{\sqrt{3}}. Then du=2sec2x3dxdu = \frac{2 \sec^2 x}{\sqrt{3}} dx. 23sec2x1+(2tanx+13)2dx=du1+u2=tan1(u)+C=tan1(2tanx+13)+C\int \frac{2}{\sqrt{3}} \frac{\sec^2 x}{1 + \left( \frac{2 \tan x + 1}{\sqrt{3}} \right)^2} dx = \int \frac{du}{1+u^2} = \tan^{-1}(u) + C' = \tan^{-1}\left(\frac{2 \tan x + 1}{\sqrt{3}}\right) + C'. The given integral is f(tanx)dx=x23tan1(g(x))+c\int f(\tan x)dx = x - \frac{2}{\sqrt{3}} \tan^{-1}(g(x)) + c. We calculated 23g(x)1+(g(x))2=1f(tanx)\frac{2}{\sqrt{3}} \frac{g'(x)}{1+(g(x))^2} = 1 - f(\tan x). Integrating this gives 23g(x)1+(g(x))2dx=(1f(tanx))dx\int \frac{2}{\sqrt{3}} \frac{g'(x)}{1+(g(x))^2} dx = \int (1 - f(\tan x)) dx. 23g(x)1+(g(x))2dx=xf(tanx)dx\frac{2}{\sqrt{3}} \int \frac{g'(x)}{1+(g(x))^2} dx = x - \int f(\tan x) dx. 23tan1(g(x))=xf(tanx)dx+constant\frac{2}{\sqrt{3}} \tan^{-1}(g(x)) = x - \int f(\tan x) dx + \text{constant}. f(tanx)dx=x23tan1(g(x))+constant\int f(\tan x) dx = x - \frac{2}{\sqrt{3}} \tan^{-1}(g(x)) + \text{constant}. This confirms that g(x)=2tanx+13g(x) = \frac{2 \tan x + 1}{\sqrt{3}}.

Now we need to find the range of g(x)g(x) for x(π3,π3)x \in (-\frac{\pi}{3}, \frac{\pi}{3}). For x(π3,π3)x \in (-\frac{\pi}{3}, \frac{\pi}{3}), the function tanx\tan x is strictly increasing. The range of tanx\tan x for x(π3,π3)x \in (-\frac{\pi}{3}, \frac{\pi}{3}) is (tan(π3),tan(π3))=(3,3)(\tan(-\frac{\pi}{3}), \tan(\frac{\pi}{3})) = (-\sqrt{3}, \sqrt{3}). Let y=tanxy = \tan x. The range of yy is (3,3)(-\sqrt{3}, \sqrt{3}). g(x)=2tanx+13=2y+13g(x) = \frac{2 \tan x + 1}{\sqrt{3}} = \frac{2y + 1}{\sqrt{3}}. We need to find the range of 2y+13\frac{2y+1}{\sqrt{3}} for y(3,3)y \in (-\sqrt{3}, \sqrt{3}). The function 2y+13\frac{2y+1}{\sqrt{3}} is a linear function of yy with a positive slope, so it is strictly increasing. The range is (2(3)+13,2(3)+13)\left( \frac{2(-\sqrt{3}) + 1}{\sqrt{3}}, \frac{2(\sqrt{3}) + 1}{\sqrt{3}} \right). Lower bound: 23+13=13233=132\frac{-2\sqrt{3} + 1}{\sqrt{3}} = \frac{1}{\sqrt{3}} - \frac{2\sqrt{3}}{\sqrt{3}} = \frac{1}{\sqrt{3}} - 2. Upper bound: 23+13=233+13=2+13\frac{2\sqrt{3} + 1}{\sqrt{3}} = \frac{2\sqrt{3}}{\sqrt{3}} + \frac{1}{\sqrt{3}} = 2 + \frac{1}{\sqrt{3}}. The range of g(x)g(x) is (132,13+2)(\frac{1}{\sqrt{3}} - 2, \frac{1}{\sqrt{3}} + 2).

The range of g(x)g(x) is (132,13+2)(\frac{1}{\sqrt{3}}-2, \frac{1}{\sqrt{3}}+2).