Solveeit Logo

Question

Question: For any continuous function $f:(0, \infty) \rightarrow \mathbb{R}$, define $R_{\alpha}=\{(x, y) \in...

For any continuous function f:(0,)Rf:(0, \infty) \rightarrow \mathbb{R}, define

Rα={(x,y)R2:0yf(x),1xα}R_{\alpha}=\{(x, y) \in \mathbb{R}^{2}: 0 \leq y \leq f(x), \quad 1 \leq x \leq \alpha\} and Sα={(x,y)R2:0yf(x),αxα2}S_{\alpha}=\{(x, y) \in \mathbb{R}^{2}: 0 \leq y \leq f(x), \quad \alpha \leq x \leq \alpha^{2}\}

where R2\mathbb{R}^{2} denotes R×R\mathbb{R} \times \mathbb{R}. Let SS be the set of all continuous functions f:(0,)Rf:(0, \infty) \rightarrow \mathbb{R}, for which area of the region Rα=SαR_{\alpha}=S_{\alpha} for all α[1,)\alpha \in[1, \infty).

Let fSf \in S such that f(1)=1f(1)=1 and, let gg be defined as follows

g(x)=limn1xnf2(t)cost dtg(x)=\lim _{n \rightarrow \infty} \int_{\frac{1}{x}}^{n} f^{2}(t) \cos t \ dt for any x>0,g(0)=0x>0, g(0)=0.

Then the value of limh0g(1π)g(1π+h)h\lim _{h \rightarrow 0} \frac{g\left(\frac{1}{\pi}\right)-g\left(\frac{1}{\pi}+h\right)}{h}

Answer

1

Explanation

Solution

The condition for a function f:(0,)Rf:(0, \infty) \rightarrow \mathbb{R} to be in the set SS is that the area of the region RαR_{\alpha} is equal to the area of the region SαS_{\alpha} for all α[1,)\alpha \in [1, \infty).

The area of RαR_{\alpha} is given by 1αf(x)dx\int_1^{\alpha} f(x) dx. The area of SαS_{\alpha} is given by αα2f(x)dx\int_{\alpha}^{\alpha^2} f(x) dx. So, for fSf \in S, we have 1αf(x)dx=αα2f(x)dx\int_1^{\alpha} f(x) dx = \int_{\alpha}^{\alpha^2} f(x) dx for all α[1,)\alpha \in [1, \infty).

Let F(x)=1xf(t)dtF(x) = \int_1^x f(t) dt. The condition is F(α)F(1)=αα2f(x)dxF(\alpha) - F(1) = \int_{\alpha}^{\alpha^2} f(x) dx. Since F(1)=11f(t)dt=0F(1) = \int_1^1 f(t) dt = 0, we have F(α)=αα2f(x)dxF(\alpha) = \int_{\alpha}^{\alpha^2} f(x) dx for all α[1,)\alpha \in [1, \infty).

Differentiating both sides with respect to α\alpha using the Leibniz integral rule: ddα1αf(x)dx=f(α)dαdαf(1)d1dα=f(α)\frac{d}{d\alpha} \int_1^{\alpha} f(x) dx = f(\alpha) \cdot \frac{d\alpha}{d\alpha} - f(1) \cdot \frac{d1}{d\alpha} = f(\alpha). ddααα2f(x)dx=f(α2)d(α2)dαf(α)dαdα=f(α2)(2α)f(α)1=2αf(α2)f(α)\frac{d}{d\alpha} \int_{\alpha}^{\alpha^2} f(x) dx = f(\alpha^2) \cdot \frac{d(\alpha^2)}{d\alpha} - f(\alpha) \cdot \frac{d\alpha}{d\alpha} = f(\alpha^2) \cdot (2\alpha) - f(\alpha) \cdot 1 = 2\alpha f(\alpha^2) - f(\alpha).

Equating the derivatives, we get f(α)=2αf(α2)f(α)f(\alpha) = 2\alpha f(\alpha^2) - f(\alpha), which simplifies to 2f(α)=2αf(α2)2f(\alpha) = 2\alpha f(\alpha^2), or f(α)=αf(α2)f(\alpha) = \alpha f(\alpha^2) for all α[1,)\alpha \in [1, \infty).

We are given that fSf \in S and f(1)=1f(1)=1. We need to find a function ff that satisfies f(α)=αf(α2)f(\alpha) = \alpha f(\alpha^2) for α[1,)\alpha \in [1, \infty) and f(1)=1f(1)=1. Let's try a power function f(x)=xpf(x) = x^p. Substituting into the functional equation: αp=α(α2)p=αα2p=α1+2p\alpha^p = \alpha (\alpha^2)^p = \alpha \alpha^{2p} = \alpha^{1+2p}. For this to hold for all α[1,)\alpha \in [1, \infty), the exponents must be equal: p=1+2pp = 1+2p, which gives p=1p = -1. So, f(x)=x1=1xf(x) = x^{-1} = \frac{1}{x} is a potential solution. Let's check if f(1)=1f(1)=1: f(1)=11=1f(1) = \frac{1}{1} = 1. This condition is satisfied. Let's verify if f(x)=1xf(x) = \frac{1}{x} satisfies the area condition for α[1,)\alpha \in [1, \infty): 1α1xdx=[lnx]1α=lnαln1=lnα\int_1^{\alpha} \frac{1}{x} dx = [\ln|x|]_1^{\alpha} = \ln \alpha - \ln 1 = \ln \alpha. αα21xdx=[lnx]αα2=ln(α2)lnα=2lnαlnα=lnα\int_{\alpha}^{\alpha^2} \frac{1}{x} dx = [\ln|x|]_{\alpha}^{\alpha^2} = \ln(\alpha^2) - \ln \alpha = 2\ln \alpha - \ln \alpha = \ln \alpha. Since lnα=lnα\ln \alpha = \ln \alpha for α[1,)\alpha \in [1, \infty), the area condition is satisfied. Thus, the function fSf \in S with f(1)=1f(1)=1 is f(x)=1xf(x) = \frac{1}{x}.

Now, consider the function g(x)=limn1xnf2(t)cost dtg(x)=\lim _{n \rightarrow \infty} \int_{\frac{1}{x}}^{n} f^{2}(t) \cos t \ dt for x>0x>0. This is an improper integral g(x)=1xf2(t)cost dtg(x) = \int_{\frac{1}{x}}^{\infty} f^{2}(t) \cos t \ dt. Substitute f(t)=1tf(t) = \frac{1}{t}: g(x)=1xcostt2dtg(x) = \int_{\frac{1}{x}}^{\infty} \frac{\cos t}{t^2} dt. The integral acostt2dt\int_a^{\infty} \frac{\cos t}{t^2} dt converges absolutely for any a>0a > 0, since costt21t2|\frac{\cos t}{t^2}| \leq \frac{1}{t^2} and a1t2dt=[1t]a=1a\int_a^{\infty} \frac{1}{t^2} dt = [-\frac{1}{t}]_a^{\infty} = \frac{1}{a}, which is finite. Thus, g(x)g(x) is well-defined for x>0x > 0.

We need to evaluate limh0g(1π)g(1π+h)h\lim _{h \rightarrow 0} \frac{g\left(\frac{1}{\pi}\right)-g\left(\frac{1}{\pi}+h\right)}{h}. This expression is the negative of the derivative of g(x)g(x) evaluated at x=1πx = \frac{1}{\pi}. Let x0=1πx_0 = \frac{1}{\pi}. The limit is dgdxx=x0-\left. \frac{dg}{dx} \right|_{x=x_0}.

To find dgdx\frac{dg}{dx}, we use the Leibniz integral rule for differentiating with respect to the lower limit. Let H(u)=uk(t)dtH(u) = \int_u^{\infty} k(t) dt. Then dHdu=k(u)\frac{dH}{du} = -k(u). In our case, k(t)=f2(t)cost=costt2k(t) = f^2(t) \cos t = \frac{\cos t}{t^2}, and the lower limit is u=1xu = \frac{1}{x}. So g(x)=1xcostt2dtg(x) = \int_{\frac{1}{x}}^{\infty} \frac{\cos t}{t^2} dt. Using the chain rule, dgdx=dgdududx\frac{dg}{dx} = \frac{dg}{du} \frac{du}{dx}, where u=1xu = \frac{1}{x}. dudx=1x2\frac{du}{dx} = -\frac{1}{x^2}. dgdu=cosuu2\frac{dg}{du} = -\frac{\cos u}{u^2}. So, dgdx=(cosuu2)(1x2)=cos(1/x)(1/x)21x2=cos(1/x)1/x21x2=x2cos(1/x)1x2=cos(1/x)\frac{dg}{dx} = \left(-\frac{\cos u}{u^2}\right) \left(-\frac{1}{x^2}\right) = \frac{\cos(1/x)}{(1/x)^2} \frac{1}{x^2} = \frac{\cos(1/x)}{1/x^2} \frac{1}{x^2} = x^2 \cos(1/x) \frac{1}{x^2} = \cos(1/x).

Wait, let's recheck the differentiation using Leibniz rule for a(x)b(x)k(t)dt\int_{a(x)}^{b(x)} k(t) dt. ddxa(x)b(x)k(t)dt=k(b(x))b(x)k(a(x))a(x)\frac{d}{dx} \int_{a(x)}^{b(x)} k(t) dt = k(b(x)) b'(x) - k(a(x)) a'(x). Here, a(x)=1xa(x) = \frac{1}{x}, b(x)=b(x) = \infty. We treat the upper limit as a constant for differentiation purposes, assuming the convergence allows this. g(x)=1xf2(t)costdtg(x) = \int_{\frac{1}{x}}^{\infty} f^2(t) \cos t dt. Let the antiderivative of f2(t)costf^2(t) \cos t be Φ(t)\Phi(t). Then g(x)=[Φ(t)]1x=limNΦ(N)Φ(1x)g(x) = [\Phi(t)]_{\frac{1}{x}}^{\infty} = \lim_{N \rightarrow \infty} \Phi(N) - \Phi(\frac{1}{x}). dgdx=ddx(limNΦ(N))ddxΦ(1x)\frac{dg}{dx} = \frac{d}{dx} \left( \lim_{N \rightarrow \infty} \Phi(N) \right) - \frac{d}{dx} \Phi(\frac{1}{x}). Assuming the limit term's derivative is 0 (which is true if the integral converges to a constant value with respect to xx), we have: dgdx=Φ(1x)ddx(1x)\frac{dg}{dx} = - \Phi'(\frac{1}{x}) \cdot \frac{d}{dx}(\frac{1}{x}). Since Φ(t)=f2(t)cost\Phi'(t) = f^2(t) \cos t, we have Φ(1x)=f2(1x)cos(1x)\Phi'(\frac{1}{x}) = f^2(\frac{1}{x}) \cos(\frac{1}{x}). ddx(1x)=1x2\frac{d}{dx}(\frac{1}{x}) = -\frac{1}{x^2}. So, dgdx=f2(1x)cos(1x)(1x2)=f2(1x)cos(1x)1x2\frac{dg}{dx} = - f^2(\frac{1}{x}) \cos(\frac{1}{x}) \cdot (-\frac{1}{x^2}) = f^2(\frac{1}{x}) \cos(\frac{1}{x}) \frac{1}{x^2}.

This matches the previous calculation. We need to evaluate this derivative at x=1πx = \frac{1}{\pi}. dgdxx=1π=f2(11/π)cos(11/π)1(1/π)2=f2(π)cos(π)π2\left. \frac{dg}{dx} \right|_{x=\frac{1}{\pi}} = f^2\left(\frac{1}{1/\pi}\right) \cos\left(\frac{1}{1/\pi}\right) \frac{1}{(1/\pi)^2} = f^2(\pi) \cos(\pi) \pi^2. Since f(x)=1xf(x) = \frac{1}{x}, f(π)=1πf(\pi) = \frac{1}{\pi}. dgdxx=1π=(1π)2cos(π)π2=1π2(1)π2=1\left. \frac{dg}{dx} \right|_{x=\frac{1}{\pi}} = \left(\frac{1}{\pi}\right)^2 \cos(\pi) \pi^2 = \frac{1}{\pi^2} (-1) \pi^2 = -1.

The required limit is limh0g(1π)g(1π+h)h\lim _{h \rightarrow 0} \frac{g\left(\frac{1}{\pi}\right)-g\left(\frac{1}{\pi}+h\right)}{h}. This is equal to dgdxx=1π-\left. \frac{dg}{dx} \right|_{x=\frac{1}{\pi}}. So, the value is (1)=1-(-1) = 1.

Therefore, the value of the limit is 1.