Solveeit Logo

Question

Question: For the curve $\sin x + \sin y = 1$ lying in the first quadrant there exists a constant $\alpha$ for...

For the curve sinx+siny=1\sin x + \sin y = 1 lying in the first quadrant there exists a constant α\alpha for which limx0xαd2ydx2=L\lim_{x \to 0} x^{\alpha} \frac{d^2y}{dx^2} = L (not zero)

The value of LL:

A

12\frac{1}{2}

B

1

C

122\frac{1}{2\sqrt{2}}

D

123\frac{1}{2\sqrt{3}}

Answer

122\frac{1}{2\sqrt{2}}

Explanation

Solution

The given curve is sinx+siny=1\sin x + \sin y = 1, lying in the first quadrant. We are asked to find the value of LL for which limx0xαd2ydx2=L\lim_{x \to 0} x^{\alpha} \frac{d^2y}{dx^2} = L (not zero) for some constant α\alpha.

First, let's find the first derivative dydx\frac{dy}{dx} by differentiating the equation with respect to xx: ddx(sinx+siny)=ddx(1)\frac{d}{dx}(\sin x + \sin y) = \frac{d}{dx}(1) cosx+cosydydx=0\cos x + \cos y \frac{dy}{dx} = 0 dydx=cosxcosy\frac{dy}{dx} = -\frac{\cos x}{\cos y}

Next, let's find the second derivative d2ydx2\frac{d^2y}{dx^2} by differentiating the first derivative with respect to xx: d2ydx2=ddx(cosxcosy)\frac{d^2y}{dx^2} = \frac{d}{dx}\left(-\frac{\cos x}{\cos y}\right) d2ydx2=ddx(cosx)cosycosxddx(cosy)(cosy)2\frac{d^2y}{dx^2} = -\frac{\frac{d}{dx}(\cos x) \cos y - \cos x \frac{d}{dx}(\cos y)}{(\cos y)^2} d2ydx2=(sinx)cosycosx(sinydydx)(cosy)2\frac{d^2y}{dx^2} = -\frac{(-\sin x) \cos y - \cos x (-\sin y \frac{dy}{dx})}{(\cos y)^2} d2ydx2=sinxcosycosxsinydydxcos2y\frac{d^2y}{dx^2} = \frac{\sin x \cos y - \cos x \sin y \frac{dy}{dx}}{\cos^2 y} Substitute dydx=cosxcosy\frac{dy}{dx} = -\frac{\cos x}{\cos y}: d2ydx2=sinxcosycosxsiny(cosxcosy)cos2y\frac{d^2y}{dx^2} = \frac{\sin x \cos y - \cos x \sin y (-\frac{\cos x}{\cos y})}{\cos^2 y} d2ydx2=sinxcosy+cos2xsinycosycos2y\frac{d^2y}{dx^2} = \frac{\sin x \cos y + \frac{\cos^2 x \sin y}{\cos y}}{\cos^2 y} d2ydx2=sinxcos2y+cos2xsinycos3y\frac{d^2y}{dx^2} = \frac{\sin x \cos^2 y + \cos^2 x \sin y}{\cos^3 y}

We need to evaluate the limit as x0x \to 0. As x0x \to 0 in the first quadrant, sinx0\sin x \to 0. Since sinx+siny=1\sin x + \sin y = 1, we must have siny1\sin y \to 1. In the first quadrant, this implies yπ2y \to \frac{\pi}{2}. As x0x \to 0, yπ2y \to \frac{\pi}{2}, we have: sinx0\sin x \to 0 cosxcos0=1\cos x \to \cos 0 = 1 sinysin(π2)=1\sin y \to \sin(\frac{\pi}{2}) = 1 cosycos(π2)=0\cos y \to \cos(\frac{\pi}{2}) = 0

The expression for d2ydx2\frac{d^2y}{dx^2} has cos3y\cos^3 y in the denominator, which approaches 0. The numerator approaches sin(0)cos2(π/2)+cos2(0)sin(π/2)=00+121=1\sin(0)\cos^2(\pi/2) + \cos^2(0)\sin(\pi/2) = 0 \cdot 0 + 1^2 \cdot 1 = 1. So d2ydx2\frac{d^2y}{dx^2} approaches infinity as x0x \to 0.

To evaluate the limit limx0xαd2ydx2\lim_{x \to 0} x^{\alpha} \frac{d^2y}{dx^2}, we need to understand how cosy\cos y behaves as x0x \to 0. From sinx+siny=1\sin x + \sin y = 1, we have siny=1sinx\sin y = 1 - \sin x. Since yπ2y \to \frac{\pi}{2}, cosy=1sin2y=1(1sinx)2=1(12sinx+sin2x)=2sinxsin2x\cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - (1 - \sin x)^2} = \sqrt{1 - (1 - 2\sin x + \sin^2 x)} = \sqrt{2\sin x - \sin^2 x}. As x0x \to 0, sinxxx36\sin x \approx x - \frac{x^3}{6}. So, cosy2(xx36)(xx36)2=2xx33(x2x43+x636)=2xx2x33+x43+\cos y \approx \sqrt{2(x - \frac{x^3}{6}) - (x - \frac{x^3}{6})^2} = \sqrt{2x - \frac{x^3}{3} - (x^2 - \frac{x^4}{3} + \frac{x^6}{36})} = \sqrt{2x - x^2 - \frac{x^3}{3} + \frac{x^4}{3} + \dots}. For small xx, the dominant term is 2x2x. cosy2x\cos y \approx \sqrt{2x}.

Now substitute this approximation into the expression for d2ydx2\frac{d^2y}{dx^2} as x0x \to 0: Numerator: sinxcos2y+cos2xsiny\sin x \cos^2 y + \cos^2 x \sin y As x0x \to 0, sinx0\sin x \to 0, cos2y2x\cos^2 y \approx 2x, cos2x1\cos^2 x \to 1, siny1\sin y \to 1. Numerator (0)(2x)+(1)(1)=1\approx (0)(2x) + (1)(1) = 1.

Denominator: cos3y\cos^3 y As x0x \to 0, cosy2x\cos y \approx \sqrt{2x}. Denominator (2x)3=(2x)3/2=22x3/2\approx (\sqrt{2x})^3 = (2x)^{3/2} = 2\sqrt{2} x^{3/2}.

So, as x0x \to 0, d2ydx2122x3/2\frac{d^2y}{dx^2} \approx \frac{1}{2\sqrt{2} x^{3/2}}.

Now, consider the limit: limx0xαd2ydx2=limx0xα(122x3/2)=limx0122xα3/2\lim_{x \to 0} x^{\alpha} \frac{d^2y}{dx^2} = \lim_{x \to 0} x^{\alpha} \left(\frac{1}{2\sqrt{2} x^{3/2}}\right) = \lim_{x \to 0} \frac{1}{2\sqrt{2}} x^{\alpha - 3/2}.

For this limit to be a non-zero finite value LL, the power of xx must be zero. α3/2=0    α=3/2\alpha - 3/2 = 0 \implies \alpha = 3/2.

With α=3/2\alpha = 3/2, the limit becomes: L=limx0122x3/23/2=limx0122x0=122L = \lim_{x \to 0} \frac{1}{2\sqrt{2}} x^{3/2 - 3/2} = \lim_{x \to 0} \frac{1}{2\sqrt{2}} x^0 = \frac{1}{2\sqrt{2}}.

The value of LL is 122\frac{1}{2\sqrt{2}}.