Solveeit Logo

Question

Question: Let $f(x) = \frac{sin^{-1}(1-\{x\})\times cos^{-1}(1-\{x\})}{\sqrt{2\{x\} \times (1-\{x\})}}$, where...

Let f(x)=sin1(1{x})×cos1(1{x})2{x}×(1{x})f(x) = \frac{sin^{-1}(1-\{x\})\times cos^{-1}(1-\{x\})}{\sqrt{2\{x\} \times (1-\{x\})}}, where {x}\{x\} denote the fractional part of xx.

R=limx0+f(x)R = \lim_{x\to 0^+}f(x) is equal to:

A

π2\frac{\pi}{2}

B

π22\frac{\pi}{2\sqrt{2}}

C

π2\frac{\pi}{\sqrt{2}}

D

2π\sqrt{2\pi}

Answer

π2\frac{\pi}{2}

Explanation

Solution

As x0+x \to 0^+, {x}=x\{x\}=x. R=limx0+sin1(1x)cos1(1x)2x(1x)R = \lim_{x\to 0^+} \frac{\sin^{-1}(1-x)\cos^{-1}(1-x)}{\sqrt{2x(1-x)}}. Let 1x=cosθ1-x = \cos\theta. As x0+x \to 0^+, θ0+\theta \to 0^+. R=limθ0+sin1(cosθ)θ2(1cosθ)cosθ=limθ0+(π/2θ)θ2(2sin2(θ/2))cosθR = \lim_{\theta\to 0^+} \frac{\sin^{-1}(\cos\theta)\theta}{\sqrt{2(1-\cos\theta)\cos\theta}} = \lim_{\theta\to 0^+} \frac{(\pi/2-\theta)\theta}{\sqrt{2(2\sin^2(\theta/2))\cos\theta}}. R=limθ0+(π/2θ)θ2sin(θ/2)cosθR = \lim_{\theta\to 0^+} \frac{(\pi/2-\theta)\theta}{2\sin(\theta/2)\sqrt{\cos\theta}}. Using sin(θ/2)θ/2\sin(\theta/2) \approx \theta/2 and cosθ1\cos\theta \approx 1 for small θ\theta. R=limθ0+(π/2θ)θ2(θ/2)=limθ0+(π/2θ)=π/2R = \lim_{\theta\to 0^+} \frac{(\pi/2-\theta)\theta}{2(\theta/2)} = \lim_{\theta\to 0^+} (\pi/2-\theta) = \pi/2.