Question
Question: Let $f(x) = \frac{sin^{-1}(1-\{x\})\times cos^{-1}(1-\{x\})}{\sqrt{2\{x\} \times (1-\{x\})}}$, where...
Let f(x)=2{x}×(1−{x})sin−1(1−{x})×cos−1(1−{x}), where {x} denote the fractional part of x.
R=limx→0+f(x) is equal to:

A
2π
B
22π
C
2π
D
2π
Answer
2π
Explanation
Solution
As x→0+, {x}=x. R=limx→0+2x(1−x)sin−1(1−x)cos−1(1−x). Let 1−x=cosθ. As x→0+, θ→0+. R=limθ→0+2(1−cosθ)cosθsin−1(cosθ)θ=limθ→0+2(2sin2(θ/2))cosθ(π/2−θ)θ. R=limθ→0+2sin(θ/2)cosθ(π/2−θ)θ. Using sin(θ/2)≈θ/2 and cosθ≈1 for small θ. R=limθ→0+2(θ/2)(π/2−θ)θ=limθ→0+(π/2−θ)=π/2.