Solveeit Logo

Question

Question: The shortest distance of the point P(0,1,2) from the line L is equal to -...

The shortest distance of the point P(0,1,2) from the line L is equal to -

A

1193\frac{\sqrt{119}}{3}

B

2

C

2193\frac{\sqrt{219}}{3}

D

133\frac{\sqrt{13}}{3}

Answer

2193\frac{\sqrt{219}}{3}

Explanation

Solution

The equation of the line L is given by r×b=a×b\vec{r} \times \vec{b} = \vec{a} \times \vec{b}. This can be rewritten as (ra)×b=0(\vec{r} - \vec{a}) \times \vec{b} = \vec{0}, implying that (ra)(\vec{r} - \vec{a}) is parallel to b\vec{b}. Thus, the equation of the line L is r=a+tb\vec{r} = \vec{a} + t\vec{b}.

Given a=i^+2j^3k^\vec{a} = \hat{i} +2\hat{j} -3\hat{k} and b=2i^j^+k^\vec{b} = 2\hat{i} - \hat{j} + \hat{k}, the line L passes through the point A(1, 2, -3) and is parallel to b=(2,1,1)\vec{b} = (2, -1, 1).

The shortest distance dd of a point P with position vector p\vec{p} from a line passing through point A with position vector a\vec{a} and parallel to vector b\vec{b} is given by:

d=(pa)×bbd = \frac{|(\vec{p} - \vec{a}) \times \vec{b}|}{|\vec{b}|}

  1. Calculate pa=(01)i^+(12)j^+(2(3))k^=i^j^+5k^\vec{p} - \vec{a} = (0-1)\hat{i} + (1-2)\hat{j} + (2-(-3))\hat{k} = -\hat{i} - \hat{j} + 5\hat{k}.

  2. Calculate (pa)×b=(i^j^+5k^)×(2i^j^+k^)=4i^+11j^+3k^(\vec{p} - \vec{a}) \times \vec{b} = (-\hat{i} - \hat{j} + 5\hat{k}) \times (2\hat{i} - \hat{j} + \hat{k}) = 4\hat{i} + 11\hat{j} + 3\hat{k}.

  3. Calculate (pa)×b=42+112+32=146|(\vec{p} - \vec{a}) \times \vec{b}| = \sqrt{4^2 + 11^2 + 3^2} = \sqrt{146}.

  4. Calculate b=22+(1)2+12=6|\vec{b}| = \sqrt{2^2 + (-1)^2 + 1^2} = \sqrt{6}.

  5. Compute the distance d=1466=1466=733=2193d = \frac{\sqrt{146}}{\sqrt{6}} = \sqrt{\frac{146}{6}} = \sqrt{\frac{73}{3}} = \frac{\sqrt{219}}{3}.

Therefore, the shortest distance is 2193\frac{\sqrt{219}}{3}.