Solveeit Logo

Question

Question: The value of $\theta$ lies in the interval...

The value of θ\theta lies in the interval

A

(0, 15°)

B

(15°, 30°)

C

30°, 45°)

D

(45°, 60°)

Answer

(D) (45°, 60°)

Explanation

Solution

The circle is x2+y2=4x^2 + y^2 = 4, centered at O(0, 0) with radius r=2r = 2. The point is P(4, 2). The distance OP=42+22=20=25OP = \sqrt{4^2 + 2^2} = \sqrt{20} = 2\sqrt{5}. Let θ\theta be the angle between the tangents from P, and let α\alpha be half of this angle (θ=2α\theta = 2\alpha). In the right-angled triangle OAP (where A is a point of contact), sinα=OAOP=225=15\sin \alpha = \frac{OA}{OP} = \frac{2}{2\sqrt{5}} = \frac{1}{\sqrt{5}}. From sinα=1/5\sin \alpha = 1/\sqrt{5}, we can find tanα=12\tan \alpha = \frac{1}{2}. Using the double angle formula for tangent, tanθ=tan(2α)=2tanα1tan2α=2(1/2)1(1/2)2=111/4=13/4=43\tan \theta = \tan(2\alpha) = \frac{2 \tan \alpha}{1 - \tan^2 \alpha} = \frac{2(1/2)}{1 - (1/2)^2} = \frac{1}{1 - 1/4} = \frac{1}{3/4} = \frac{4}{3}. Since tan45=1\tan 45^\circ = 1 and tan60=31.732\tan 60^\circ = \sqrt{3} \approx 1.732, and 1<4/3<31 < 4/3 < \sqrt{3}, the angle θ\theta lies in the interval (45,60)(45^\circ, 60^\circ).