Solveeit Logo

Question

Question: Let $f(x) = 1 + \int_{0}^{1}(xe^y+ye^x)f(y)dy$ where $x$ and $y$ are independent variables. If comp...

Let f(x)=1+01(xey+yex)f(y)dyf(x) = 1 + \int_{0}^{1}(xe^y+ye^x)f(y)dy where xx and yy are independent variables.

If complete solution set of 'x' for which function h(x)=f(x)+3xh(x) = f(x) + 3x is strictly increasing is (,k)(-\infty, k) then [43ek]\left[\frac{4}{3}e^k\right] equals to : (where [.] denotes greatest integer function):

A

1

B

2

C

3

D

4

Answer

3

Explanation

Solution

The given equation is f(x)=1+01(xey+yex)f(y)dyf(x) = 1 + \int_{0}^{1}(xe^y+ye^x)f(y)dy. We can split the integral into two parts: f(x)=1+01xeyf(y)dy+01yexf(y)dyf(x) = 1 + \int_{0}^{1}xe^y f(y)dy + \int_{0}^{1}ye^x f(y)dy Since xx is independent of the integration variable yy, we can take xx and exe^x out of the integrals: f(x)=1+x01eyf(y)dy+ex01yf(y)dyf(x) = 1 + x \int_{0}^{1}e^y f(y)dy + e^x \int_{0}^{1}y f(y)dy.

Let A=01eyf(y)dyA = \int_{0}^{1}e^y f(y)dy and B=01yf(y)dyB = \int_{0}^{1}y f(y)dy. A and B are constants. Then f(x)=1+Ax+Bexf(x) = 1 + Ax + Be^x.

Now we substitute this form of f(y)f(y) back into the definitions of A and B. For A: A=01ey(1+Ay+Bey)dy=01(ey+Ayey+Be2y)dyA = \int_{0}^{1}e^y (1 + Ay + Be^y)dy = \int_{0}^{1}(e^y + Aye^y + Be^{2y})dy A=01eydy+A01yeydy+B01e2ydyA = \int_{0}^{1}e^y dy + A\int_{0}^{1}ye^y dy + B\int_{0}^{1}e^{2y} dy. 01eydy=[ey]01=e1\int_{0}^{1}e^y dy = [e^y]_0^1 = e - 1. 01yeydy\int_{0}^{1}ye^y dy: Use integration by parts udv=uvvdu\int u dv = uv - \int v du with u=y,dv=eydyu=y, dv=e^y dy. Then du=dy,v=eydu=dy, v=e^y. 01yeydy=[yey]0101eydy=(1e10e0)[ey]01=e(e1)=1\int_{0}^{1}ye^y dy = [ye^y]_0^1 - \int_{0}^{1}e^y dy = (1 \cdot e^1 - 0 \cdot e^0) - [e^y]_0^1 = e - (e - 1) = 1. 01e2ydy=[12e2y]01=12(e2e0)=e212\int_{0}^{1}e^{2y} dy = [\frac{1}{2}e^{2y}]_0^1 = \frac{1}{2}(e^2 - e^0) = \frac{e^2 - 1}{2}. Substituting these values into the equation for A: A=(e1)+A(1)+B(e212)A = (e - 1) + A(1) + B\left(\frac{e^2 - 1}{2}\right) A=e1+A+B(e1)(e+1)2A = e - 1 + A + B\frac{(e-1)(e+1)}{2}. 0=e1+B(e1)(e+1)20 = e - 1 + B\frac{(e-1)(e+1)}{2}. Since e1e \neq 1, e10e-1 \neq 0. We can divide by (e1)(e-1): 0=1+Be+120 = 1 + B\frac{e+1}{2}. Be+12=1    B=2e+1B\frac{e+1}{2} = -1 \implies B = -\frac{2}{e+1}.

For B: B=01y(1+Ay+Bey)dy=01(y+Ay2+Byey)dyB = \int_{0}^{1}y (1 + Ay + Be^y)dy = \int_{0}^{1}(y + Ay^2 + Bye^y)dy B=01ydy+A01y2dy+B01yeydyB = \int_{0}^{1}y dy + A\int_{0}^{1}y^2 dy + B\int_{0}^{1}ye^y dy. 01ydy=[y22]01=120=12\int_{0}^{1}y dy = [\frac{y^2}{2}]_0^1 = \frac{1}{2} - 0 = \frac{1}{2}. 01y2dy=[y33]01=130=13\int_{0}^{1}y^2 dy = [\frac{y^3}{3}]_0^1 = \frac{1}{3} - 0 = \frac{1}{3}. 01yeydy=1\int_{0}^{1}ye^y dy = 1 (calculated above). Substituting these values into the equation for B: B=12+A(13)+B(1)B = \frac{1}{2} + A\left(\frac{1}{3}\right) + B(1). B=12+A3+BB = \frac{1}{2} + \frac{A}{3} + B. 0=12+A30 = \frac{1}{2} + \frac{A}{3}. A3=12    A=32\frac{A}{3} = -\frac{1}{2} \implies A = -\frac{3}{2}.

So, the function f(x)f(x) is f(x)=1+Ax+Bex=132x2e+1exf(x) = 1 + Ax + Be^x = 1 - \frac{3}{2}x - \frac{2}{e+1}e^x.

Now consider the function h(x)=f(x)+3xh(x) = f(x) + 3x. h(x)=(132x2e+1ex)+3x=1+(332)x2e+1exh(x) = \left(1 - \frac{3}{2}x - \frac{2}{e+1}e^x\right) + 3x = 1 + \left(3 - \frac{3}{2}\right)x - \frac{2}{e+1}e^x h(x)=1+32x2e+1exh(x) = 1 + \frac{3}{2}x - \frac{2}{e+1}e^x.

For h(x)h(x) to be strictly increasing, its derivative h(x)h'(x) must be positive. h(x)=ddx(1+32x2e+1ex)=0+322e+1exh'(x) = \frac{d}{dx}\left(1 + \frac{3}{2}x - \frac{2}{e+1}e^x\right) = 0 + \frac{3}{2} - \frac{2}{e+1}e^x. h(x)>0    322e+1ex>0h'(x) > 0 \implies \frac{3}{2} - \frac{2}{e+1}e^x > 0. 32>2e+1ex\frac{3}{2} > \frac{2}{e+1}e^x. Multiply both sides by e+12\frac{e+1}{2}: 32e+12>ex\frac{3}{2} \cdot \frac{e+1}{2} > e^x 3(e+1)4>ex\frac{3(e+1)}{4} > e^x.

To solve for xx, take the natural logarithm of both sides: ln(3(e+1)4)>ln(ex)\ln\left(\frac{3(e+1)}{4}\right) > \ln(e^x) ln(3(e+1)4)>x\ln\left(\frac{3(e+1)}{4}\right) > x.

The complete solution set of xx for which h(x)h(x) is strictly increasing is (,ln(3(e+1)4))(-\infty, \ln\left(\frac{3(e+1)}{4}\right)). This set is given as (,k)(-\infty, k), so k=ln(3(e+1)4)k = \ln\left(\frac{3(e+1)}{4}\right).

We need to calculate [43ek]\left[\frac{4}{3}e^k\right]. First, find eke^k: ek=eln(3(e+1)4)=3(e+1)4e^k = e^{\ln\left(\frac{3(e+1)}{4}\right)} = \frac{3(e+1)}{4}.

Now, calculate 43ek\frac{4}{3}e^k: 43ek=433(e+1)4=e+1\frac{4}{3}e^k = \frac{4}{3} \cdot \frac{3(e+1)}{4} = e+1.

Finally, we need to find the greatest integer of e+1e+1, i.e., [e+1][e+1]. The value of ee is approximately 2.718282.71828. So, e+1e+1 is approximately 2.71828+1=3.718282.71828 + 1 = 3.71828. The greatest integer function [x][x] gives the largest integer less than or equal to xx. [e+1]=[3.71828]=3[e+1] = [3.71828] = 3.

The value of [43ek]\left[\frac{4}{3}e^k\right] is 3.