Question
Question: Let $f(x) = 1 + \int_{0}^{1}(xe^y+ye^x)f(y)dy$ where $x$ and $y$ are independent variables. If comp...
Let f(x)=1+∫01(xey+yex)f(y)dy where x and y are independent variables.
If complete solution set of 'x' for which function h(x)=f(x)+3x is strictly increasing is (−∞,k) then [34ek] equals to : (where [.] denotes greatest integer function):

1
2
3
4
3
Solution
The given equation is f(x)=1+∫01(xey+yex)f(y)dy. We can split the integral into two parts: f(x)=1+∫01xeyf(y)dy+∫01yexf(y)dy Since x is independent of the integration variable y, we can take x and ex out of the integrals: f(x)=1+x∫01eyf(y)dy+ex∫01yf(y)dy.
Let A=∫01eyf(y)dy and B=∫01yf(y)dy. A and B are constants. Then f(x)=1+Ax+Bex.
Now we substitute this form of f(y) back into the definitions of A and B. For A: A=∫01ey(1+Ay+Bey)dy=∫01(ey+Ayey+Be2y)dy A=∫01eydy+A∫01yeydy+B∫01e2ydy. ∫01eydy=[ey]01=e−1. ∫01yeydy: Use integration by parts ∫udv=uv−∫vdu with u=y,dv=eydy. Then du=dy,v=ey. ∫01yeydy=[yey]01−∫01eydy=(1⋅e1−0⋅e0)−[ey]01=e−(e−1)=1. ∫01e2ydy=[21e2y]01=21(e2−e0)=2e2−1. Substituting these values into the equation for A: A=(e−1)+A(1)+B(2e2−1) A=e−1+A+B2(e−1)(e+1). 0=e−1+B2(e−1)(e+1). Since e=1, e−1=0. We can divide by (e−1): 0=1+B2e+1. B2e+1=−1⟹B=−e+12.
For B: B=∫01y(1+Ay+Bey)dy=∫01(y+Ay2+Byey)dy B=∫01ydy+A∫01y2dy+B∫01yeydy. ∫01ydy=[2y2]01=21−0=21. ∫01y2dy=[3y3]01=31−0=31. ∫01yeydy=1 (calculated above). Substituting these values into the equation for B: B=21+A(31)+B(1). B=21+3A+B. 0=21+3A. 3A=−21⟹A=−23.
So, the function f(x) is f(x)=1+Ax+Bex=1−23x−e+12ex.
Now consider the function h(x)=f(x)+3x. h(x)=(1−23x−e+12ex)+3x=1+(3−23)x−e+12ex h(x)=1+23x−e+12ex.
For h(x) to be strictly increasing, its derivative h′(x) must be positive. h′(x)=dxd(1+23x−e+12ex)=0+23−e+12ex. h′(x)>0⟹23−e+12ex>0. 23>e+12ex. Multiply both sides by 2e+1: 23⋅2e+1>ex 43(e+1)>ex.
To solve for x, take the natural logarithm of both sides: ln(43(e+1))>ln(ex) ln(43(e+1))>x.
The complete solution set of x for which h(x) is strictly increasing is (−∞,ln(43(e+1))). This set is given as (−∞,k), so k=ln(43(e+1)).
We need to calculate [34ek]. First, find ek: ek=eln(43(e+1))=43(e+1).
Now, calculate 34ek: 34ek=34⋅43(e+1)=e+1.
Finally, we need to find the greatest integer of e+1, i.e., [e+1]. The value of e is approximately 2.71828. So, e+1 is approximately 2.71828+1=3.71828. The greatest integer function [x] gives the largest integer less than or equal to x. [e+1]=[3.71828]=3.
The value of [34ek] is 3.