Solveeit Logo

Question

Question: If $P(x) = \begin{vmatrix} a_1 & x & x \\ x & a_2 & x \\ x & x & a_3 \end{vmatrix} = xg(x) - f(x)$, ...

If P(x)=a1xxxa2xxxa3=xg(x)f(x)P(x) = \begin{vmatrix} a_1 & x & x \\ x & a_2 & x \\ x & x & a_3 \end{vmatrix} = xg(x) - f(x), then (where, f(x)=(xa1)(xa2)(xa3)f(x) = (x - a_1)(x - a_2)(x - a_3))

Answer

g(x) = 3x^2 - 2(a_1 + a_2 + a_3)x + (a_1 a_2 + a_1 a_3 + a_2 a_3)

Explanation

Solution

The problem provides a determinant P(x)P(x) and a relationship P(x)=xg(x)f(x)P(x) = xg(x) - f(x), where f(x)f(x) is a given polynomial. The goal is to determine the expression for g(x)g(x).

1. Expand the determinant P(x)P(x): P(x)=a1xxxa2xxxa3P(x) = \begin{vmatrix} a_1 & x & x \\ x & a_2 & x \\ x & x & a_3 \end{vmatrix}

Expand along the first row: P(x)=a1a2xxa3xxxxa3+xxa2xxP(x) = a_1 \begin{vmatrix} a_2 & x \\ x & a_3 \end{vmatrix} - x \begin{vmatrix} x & x \\ x & a_3 \end{vmatrix} + x \begin{vmatrix} x & a_2 \\ x & x \end{vmatrix} P(x)=a1(a2a3x2)x(xa3x2)+x(x2xa2)P(x) = a_1 (a_2 a_3 - x^2) - x (x a_3 - x^2) + x (x^2 - x a_2) P(x)=a1a2a3a1x2x2a3+x3+x3x2a2P(x) = a_1 a_2 a_3 - a_1 x^2 - x^2 a_3 + x^3 + x^3 - x^2 a_2 P(x)=2x3(a1+a2+a3)x2+a1a2a3P(x) = 2x^3 - (a_1 + a_2 + a_3)x^2 + a_1 a_2 a_3

2. Expand the polynomial f(x)f(x): f(x)=(xa1)(xa2)(xa3)f(x) = (x - a_1)(x - a_2)(x - a_3) This is a standard expansion for a cubic polynomial with roots a1,a2,a3a_1, a_2, a_3: f(x)=x3(a1+a2+a3)x2+(a1a2+a1a3+a2a3)xa1a2a3f(x) = x^3 - (a_1 + a_2 + a_3)x^2 + (a_1 a_2 + a_1 a_3 + a_2 a_3)x - a_1 a_2 a_3

3. Use the given relationship P(x)=xg(x)f(x)P(x) = xg(x) - f(x) to find xg(x)xg(x): Rearrange the equation to solve for xg(x)xg(x): xg(x)=P(x)+f(x)xg(x) = P(x) + f(x)

Substitute the expanded forms of P(x)P(x) and f(x)f(x): xg(x)=[2x3(a1+a2+a3)x2+a1a2a3]+[x3(a1+a2+a3)x2+(a1a2+a1a3+a2a3)xa1a2a3]xg(x) = [2x^3 - (a_1 + a_2 + a_3)x^2 + a_1 a_2 a_3] + [x^3 - (a_1 + a_2 + a_3)x^2 + (a_1 a_2 + a_1 a_3 + a_2 a_3)x - a_1 a_2 a_3]

Combine like terms: xg(x)=(2x3+x3)(a1+a2+a3)x2(a1+a2+a3)x2+(a1a2+a1a3+a2a3)x+(a1a2a3a1a2a3)xg(x) = (2x^3 + x^3) - (a_1 + a_2 + a_3)x^2 - (a_1 + a_2 + a_3)x^2 + (a_1 a_2 + a_1 a_3 + a_2 a_3)x + (a_1 a_2 a_3 - a_1 a_2 a_3) xg(x)=3x32(a1+a2+a3)x2+(a1a2+a1a3+a2a3)xxg(x) = 3x^3 - 2(a_1 + a_2 + a_3)x^2 + (a_1 a_2 + a_1 a_3 + a_2 a_3)x

4. Determine g(x)g(x) by dividing by xx: Factor out xx from the expression for xg(x)xg(x): xg(x)=x[3x22(a1+a2+a3)x+(a1a2+a1a3+a2a3)]xg(x) = x [3x^2 - 2(a_1 + a_2 + a_3)x + (a_1 a_2 + a_1 a_3 + a_2 a_3)]

Therefore, g(x)g(x) is: g(x)=3x22(a1+a2+a3)x+(a1a2+a1a3+a2a3)g(x) = 3x^2 - 2(a_1 + a_2 + a_3)x + (a_1 a_2 + a_1 a_3 + a_2 a_3)