Question
Question: If $P(x) = \begin{vmatrix} a_1 & x & x \\ x & a_2 & x \\ x & x & a_3 \end{vmatrix} = xg(x) - f(x)$, ...
If P(x)=a1xxxa2xxxa3=xg(x)−f(x), then (where, f(x)=(x−a1)(x−a2)(x−a3))

g(x) = 3x^2 - 2(a_1 + a_2 + a_3)x + (a_1 a_2 + a_1 a_3 + a_2 a_3)
Solution
The problem provides a determinant P(x) and a relationship P(x)=xg(x)−f(x), where f(x) is a given polynomial. The goal is to determine the expression for g(x).
1. Expand the determinant P(x): P(x)=a1xxxa2xxxa3
Expand along the first row: P(x)=a1a2xxa3−xxxxa3+xxxa2x P(x)=a1(a2a3−x2)−x(xa3−x2)+x(x2−xa2) P(x)=a1a2a3−a1x2−x2a3+x3+x3−x2a2 P(x)=2x3−(a1+a2+a3)x2+a1a2a3
2. Expand the polynomial f(x): f(x)=(x−a1)(x−a2)(x−a3) This is a standard expansion for a cubic polynomial with roots a1,a2,a3: f(x)=x3−(a1+a2+a3)x2+(a1a2+a1a3+a2a3)x−a1a2a3
3. Use the given relationship P(x)=xg(x)−f(x) to find xg(x): Rearrange the equation to solve for xg(x): xg(x)=P(x)+f(x)
Substitute the expanded forms of P(x) and f(x): xg(x)=[2x3−(a1+a2+a3)x2+a1a2a3]+[x3−(a1+a2+a3)x2+(a1a2+a1a3+a2a3)x−a1a2a3]
Combine like terms: xg(x)=(2x3+x3)−(a1+a2+a3)x2−(a1+a2+a3)x2+(a1a2+a1a3+a2a3)x+(a1a2a3−a1a2a3) xg(x)=3x3−2(a1+a2+a3)x2+(a1a2+a1a3+a2a3)x
4. Determine g(x) by dividing by x: Factor out x from the expression for xg(x): xg(x)=x[3x2−2(a1+a2+a3)x+(a1a2+a1a3+a2a3)]
Therefore, g(x) is: g(x)=3x2−2(a1+a2+a3)x+(a1a2+a1a3+a2a3)