Solveeit Logo

Question

Question: The amount of heat required to reach the outer skin of aluminium to its boiling point is...

The amount of heat required to reach the outer skin of aluminium to its boiling point is

A

129.7 J

B

140.7 J

C

196.4 J

D

554.7 J

Answer

129.7 J

Explanation

Solution

The heat required to raise the temperature of a substance is given by the formula Q=mcΔTQ = mc\Delta T. \begin{itemize} \item Change in temperature (ΔT\Delta T): 2500C(50C)=2550C2500^\circ C - (-50^\circ C) = 2550^\circ C. \item Volume of aluminium heated: The laser spot has a radius of 0.5 mm=0.05 cm0.5 \text{ mm} = 0.05 \text{ cm}. The area is A=πr2=π(0.05 cm)2=0.0025π cm2A = \pi r^2 = \pi (0.05 \text{ cm})^2 = 0.0025\pi \text{ cm}^2. The volume is V=A×thickness=(0.0025π cm2)×(3 cm)=0.0075π cm3V = A \times \text{thickness} = (0.0025\pi \text{ cm}^2) \times (3 \text{ cm}) = 0.0075\pi \text{ cm}^3. \item Mass of aluminium (mm): m=density×V=(2.4 g/cm3)×(0.0075π cm3)=0.018π gm = \text{density} \times V = (2.4 \text{ g/cm}^3) \times (0.0075\pi \text{ cm}^3) = 0.018\pi \text{ g}. \item Heat required (QQ): Q=mcΔT=(0.018π g)×(0.9 J/gC)×(2550C)=41.31π JQ = mc\Delta T = (0.018\pi \text{ g}) \times (0.9 \text{ J/g}^\circ C) \times (2550^\circ C) = 41.31\pi \text{ J}. Using π3.14159\pi \approx 3.14159, Q41.31×3.14159 J129.78 JQ \approx 41.31 \times 3.14159 \text{ J} \approx 129.78 \text{ J}. \end{itemize}