Solveeit Logo

Question

Question: If $I_1(\sqrt{2}) = \frac{9\pi}{16}$, then $\lim_{x\to 0}\frac{cos(I_1(x))}{x^2}$ is equal to -...

If I1(2)=9π16I_1(\sqrt{2}) = \frac{9\pi}{16}, then limx0cos(I1(x))x2\lim_{x\to 0}\frac{cos(I_1(x))}{x^2} is equal to -

A

14-\frac{1}{4}

B

18-\frac{1}{8}

C

18\frac{1}{8}

D

1

Answer

18-\frac{1}{8}

Explanation

Solution

  1. Evaluate I1(x)I_1(x): I1(x)=xdxx4+4I_1(x) = \int\frac{x dx}{x^4+4} Let u=x2u = x^2, then du=2xdxdu = 2x dx, so xdx=12dux dx = \frac{1}{2} du. I1(x)=12duu2+4=12duu2+22I_1(x) = \int\frac{\frac{1}{2} du}{u^2+4} = \frac{1}{2} \int\frac{du}{u^2+2^2} Using the standard integral formula dxx2+a2=1atan1(xa)+C\int\frac{dx}{x^2+a^2} = \frac{1}{a}\tan^{-1}(\frac{x}{a}) + C: I1(x)=1212tan1(u2)+C=14tan1(x22)+CI_1(x) = \frac{1}{2} \cdot \frac{1}{2}\tan^{-1}(\frac{u}{2}) + C = \frac{1}{4}\tan^{-1}(\frac{x^2}{2}) + C.

  2. Determine the constant C: Given I1(2)=9π16I_1(\sqrt{2}) = \frac{9\pi}{16}. Substitute x=2x=\sqrt{2} into I1(x)I_1(x): I1(2)=14tan1((2)22)+C=14tan1(22)+C=14tan1(1)+CI_1(\sqrt{2}) = \frac{1}{4}\tan^{-1}(\frac{(\sqrt{2})^2}{2}) + C = \frac{1}{4}\tan^{-1}(\frac{2}{2}) + C = \frac{1}{4}\tan^{-1}(1) + C. Since tan1(1)=π4\tan^{-1}(1) = \frac{\pi}{4}: I1(2)=14π4+C=π16+CI_1(\sqrt{2}) = \frac{1}{4} \cdot \frac{\pi}{4} + C = \frac{\pi}{16} + C. Equating this to the given value: π16+C=9π16    C=8π16=π2\frac{\pi}{16} + C = \frac{9\pi}{16} \implies C = \frac{8\pi}{16} = \frac{\pi}{2}. So, I1(x)=14tan1(x22)+π2I_1(x) = \frac{1}{4}\tan^{-1}(\frac{x^2}{2}) + \frac{\pi}{2}.

  3. Evaluate the limit: We need to find L=limx0cos(I1(x))x2L = \lim_{x\to 0}\frac{\cos(I_1(x))}{x^2}. As x0x \to 0, I1(x)14tan1(0)+π2=0+π2=π2I_1(x) \to \frac{1}{4}\tan^{-1}(0) + \frac{\pi}{2} = 0 + \frac{\pi}{2} = \frac{\pi}{2}. So, as x0x \to 0, cos(I1(x))cos(π2)=0\cos(I_1(x)) \to \cos(\frac{\pi}{2}) = 0. The limit is of the indeterminate form 00\frac{0}{0}, so we can use L'Hopital's Rule. L=limx0sin(I1(x))I1(x)2xL = \lim_{x\to 0}\frac{-\sin(I_1(x)) \cdot I_1'(x)}{2x}. Recall that I1(x)I_1'(x) is the integrand of I1(x)I_1(x), so I1(x)=xx4+4I_1'(x) = \frac{x}{x^4+4}. Substitute I1(x)I_1'(x): L=limx0sin(I1(x))xx4+42xL = \lim_{x\to 0}\frac{-\sin(I_1(x)) \cdot \frac{x}{x^4+4}}{2x}. Simplify by cancelling xx (since x0x \ne 0 in the limit): L=limx0sin(I1(x))2(x4+4)L = \lim_{x\to 0}\frac{-\sin(I_1(x))}{2(x^4+4)}. Now, substitute x=0x=0: As x0x \to 0, I1(x)π2I_1(x) \to \frac{\pi}{2}, so sin(I1(x))sin(π2)=1\sin(I_1(x)) \to \sin(\frac{\pi}{2}) = 1. The denominator 2(x4+4)2(04+4)=82(x^4+4) \to 2(0^4+4) = 8. Therefore, L=18L = \frac{-1}{8}.

    Alternatively, using small angle approximation: Let y=I1(x)y = I_1(x). As x0x \to 0, yπ2y \to \frac{\pi}{2}. Let y=π2+δy = \frac{\pi}{2} + \delta, where δ=I1(x)π2=14tan1(x22)\delta = I_1(x) - \frac{\pi}{2} = \frac{1}{4}\tan^{-1}(\frac{x^2}{2}). As x0x \to 0, x220\frac{x^2}{2} \to 0. For small zz, tan1(z)z\tan^{-1}(z) \approx z. So, δ14x22=x28\delta \approx \frac{1}{4} \cdot \frac{x^2}{2} = \frac{x^2}{8}. Now, cos(I1(x))=cos(π2+δ)=sin(δ)\cos(I_1(x)) = \cos(\frac{\pi}{2} + \delta) = -\sin(\delta). For small δ\delta, sin(δ)δ\sin(\delta) \approx \delta. So, cos(I1(x))δx28\cos(I_1(x)) \approx -\delta \approx -\frac{x^2}{8}. The limit becomes limx0x28x2=18\lim_{x\to 0}\frac{-\frac{x^2}{8}}{x^2} = -\frac{1}{8}.