Solveeit Logo

Question

Question: Let $I_r(x) = \int \frac{x^r dx}{x^4 + 4} (x > 0)$ If $I_1(\sqrt{2}) = \frac{9\pi}{16}$, then $\lim...

Let Ir(x)=xrdxx4+4(x>0)I_r(x) = \int \frac{x^r dx}{x^4 + 4} (x > 0)

If I1(2)=9π16I_1(\sqrt{2}) = \frac{9\pi}{16}, then limx0cos(I1(x))x2\lim_{x\to 0} \frac{\cos(I_1(x))}{x^2} is equal to -

A

-14\frac{1}{4}

B

-18\frac{1}{8}

C

18\frac{1}{8}

D

1

Answer

-18\frac{1}{8}

Explanation

Solution

  1. Find I1(x)I_1(x): I1(x)=xdxx4+4I_1(x) = \int \frac{x dx}{x^4 + 4} Let u=x2u = x^2, then du=2xdxdu = 2x dx, so xdx=12dux dx = \frac{1}{2} du. I1(x)=12duu2+4=12duu2+22I_1(x) = \int \frac{\frac{1}{2} du}{u^2 + 4} = \frac{1}{2} \int \frac{du}{u^2 + 2^2} Using the standard integral dxx2+a2=1atan1(xa)+C\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1}(\frac{x}{a}) + C: I1(x)=1212tan1(u2)+C=14tan1(x22)+CI_1(x) = \frac{1}{2} \cdot \frac{1}{2} \tan^{-1}(\frac{u}{2}) + C = \frac{1}{4} \tan^{-1}(\frac{x^2}{2}) + C.

  2. Determine the constant CC using I1(2)=9π16I_1(\sqrt{2}) = \frac{9\pi}{16}: Substitute x=2x = \sqrt{2} into I1(x)I_1(x): I1(2)=14tan1((2)22)+C=14tan1(22)+C=14tan1(1)+CI_1(\sqrt{2}) = \frac{1}{4} \tan^{-1}(\frac{(\sqrt{2})^2}{2}) + C = \frac{1}{4} \tan^{-1}(\frac{2}{2}) + C = \frac{1}{4} \tan^{-1}(1) + C I1(2)=14π4+C=π16+CI_1(\sqrt{2}) = \frac{1}{4} \cdot \frac{\pi}{4} + C = \frac{\pi}{16} + C. Given I1(2)=9π16I_1(\sqrt{2}) = \frac{9\pi}{16}, we have: π16+C=9π16    C=8π16=π2\frac{\pi}{16} + C = \frac{9\pi}{16} \implies C = \frac{8\pi}{16} = \frac{\pi}{2}. So, I1(x)=14tan1(x22)+π2I_1(x) = \frac{1}{4} \tan^{-1}(\frac{x^2}{2}) + \frac{\pi}{2}.

  3. Evaluate the limit limx0cos(I1(x))x2\lim_{x\to 0} \frac{\cos(I_1(x))}{x^2}: First, find I1(0)I_1(0): I1(0)=14tan1(022)+π2=14tan1(0)+π2=0+π2=π2I_1(0) = \frac{1}{4} \tan^{-1}(\frac{0^2}{2}) + \frac{\pi}{2} = \frac{1}{4} \tan^{-1}(0) + \frac{\pi}{2} = 0 + \frac{\pi}{2} = \frac{\pi}{2}. As x0x \to 0, I1(x)π2I_1(x) \to \frac{\pi}{2}. The limit is of the form cos(π/2)0=00\frac{\cos(\pi/2)}{0} = \frac{0}{0}, so we can apply L'Hopital's Rule. Let L=limx0cos(I1(x))x2L = \lim_{x\to 0} \frac{\cos(I_1(x))}{x^2}. Differentiate numerator and denominator with respect to xx: L=limx0sin(I1(x))I1(x)2xL = \lim_{x\to 0} \frac{-\sin(I_1(x)) \cdot I_1'(x)}{2x}. From the definition Ir(x)=xrdxx4+4I_r(x) = \int \frac{x^r dx}{x^4 + 4}, by the Fundamental Theorem of Calculus, I1(x)=xx4+4I_1'(x) = \frac{x}{x^4 + 4}. Substitute I1(x)I_1'(x): L=limx0sin(I1(x))xx4+42xL = \lim_{x\to 0} \frac{-\sin(I_1(x)) \cdot \frac{x}{x^4 + 4}}{2x} L=limx0sin(I1(x))2(x4+4)L = \lim_{x\to 0} \frac{-\sin(I_1(x))}{2(x^4 + 4)}. Now, substitute x=0x=0: L=sin(I1(0))2(04+4)=sin(π/2)2(4)=18L = \frac{-\sin(I_1(0))}{2(0^4 + 4)} = \frac{-\sin(\pi/2)}{2(4)} = \frac{-1}{8}.

The final answer is -18\boxed{\text{-}\frac{1}{8}}.