Question
Question: Let $I_r(x) = \int \frac{x^r dx}{x^4 + 4} (x > 0)$ On the basis of above information, answer the fo...
Let Ir(x)=∫x4+4xrdx(x>0)
On the basis of above information, answer the following questions : 21. If I1(2)=169π, then limx→0x2cos(I1(x)) is equal to -

-\frac{1}{4}
-\frac{1}{8}
\frac{1}{8}
1
-\frac{1}{8}
Solution
-
Calculate I1(x): I1(x)=∫x4+4xdx. Let u=x2, so du=2xdx. I1(x)=∫u2+221/2du=21⋅21tan−1(2u)+C=41tan−1(2x2)+C.
-
Determine the constant C: Given I1(2)=169π. 41tan−1(2(2)2)+C=169π 41tan−1(1)+C=169π 41⋅4π+C=169π⟹16π+C=169π⟹C=168π=2π. So, I1(x)=41tan−1(2x2)+2π.
-
Evaluate the limit: We need to find L=limx→0x2cos(I1(x)). As x→0, I1(x)→41tan−1(0)+2π=2π. Thus, as x→0, cos(I1(x))→cos(2π)=0. The limit is of the form 00. Using L'Hopital's Rule: L=limx→02x−sin(I1(x))⋅I1′(x). From the definition, I1′(x)=x4+4x. L=limx→02x−sin(I1(x))⋅x4+4x=limx→02(x4+4)−sin(I1(x)). Substitute x=0: L=2(04+4)−sin(π/2)=8−1.