Solveeit Logo

Question

Question: Let $I_r(x) = \int \frac{x^r dx}{x^4 + 4} (x > 0)$ On the basis of above information, answer the fo...

Let Ir(x)=xrdxx4+4(x>0)I_r(x) = \int \frac{x^r dx}{x^4 + 4} (x > 0)

On the basis of above information, answer the following questions : 21. If I1(2)=9π16I_1(\sqrt{2}) = \frac{9\pi}{16}, then limx0cos(I1(x))x2lim_{x\to0} \frac{cos(I_1(x))}{x^2} is equal to -

A

-\frac{1}{4}

B

-\frac{1}{8}

C

\frac{1}{8}

D

1

Answer

-\frac{1}{8}

Explanation

Solution

  1. Calculate I1(x)I_1(x): I1(x)=xdxx4+4I_1(x) = \int \frac{x dx}{x^4 + 4}. Let u=x2u = x^2, so du=2xdxdu = 2x dx. I1(x)=1/2duu2+22=1212tan1(u2)+C=14tan1(x22)+CI_1(x) = \int \frac{1/2 du}{u^2 + 2^2} = \frac{1}{2} \cdot \frac{1}{2} \tan^{-1}\left(\frac{u}{2}\right) + C = \frac{1}{4} \tan^{-1}\left(\frac{x^2}{2}\right) + C.

  2. Determine the constant CC: Given I1(2)=9π16I_1(\sqrt{2}) = \frac{9\pi}{16}. 14tan1((2)22)+C=9π16\frac{1}{4} \tan^{-1}\left(\frac{(\sqrt{2})^2}{2}\right) + C = \frac{9\pi}{16} 14tan1(1)+C=9π16\frac{1}{4} \tan^{-1}(1) + C = \frac{9\pi}{16} 14π4+C=9π16    π16+C=9π16    C=8π16=π2\frac{1}{4} \cdot \frac{\pi}{4} + C = \frac{9\pi}{16} \implies \frac{\pi}{16} + C = \frac{9\pi}{16} \implies C = \frac{8\pi}{16} = \frac{\pi}{2}. So, I1(x)=14tan1(x22)+π2I_1(x) = \frac{1}{4} \tan^{-1}\left(\frac{x^2}{2}\right) + \frac{\pi}{2}.

  3. Evaluate the limit: We need to find L=limx0cos(I1(x))x2L = \lim_{x\to0} \frac{\cos(I_1(x))}{x^2}. As x0x \to 0, I1(x)14tan1(0)+π2=π2I_1(x) \to \frac{1}{4} \tan^{-1}(0) + \frac{\pi}{2} = \frac{\pi}{2}. Thus, as x0x \to 0, cos(I1(x))cos(π2)=0\cos(I_1(x)) \to \cos(\frac{\pi}{2}) = 0. The limit is of the form 00\frac{0}{0}. Using L'Hopital's Rule: L=limx0sin(I1(x))I1(x)2xL = \lim_{x\to0} \frac{-\sin(I_1(x)) \cdot I_1'(x)}{2x}. From the definition, I1(x)=xx4+4I_1'(x) = \frac{x}{x^4 + 4}. L=limx0sin(I1(x))xx4+42x=limx0sin(I1(x))2(x4+4)L = \lim_{x\to0} \frac{-\sin(I_1(x)) \cdot \frac{x}{x^4 + 4}}{2x} = \lim_{x\to0} \frac{-\sin(I_1(x))}{2(x^4 + 4)}. Substitute x=0x=0: L=sin(π/2)2(04+4)=18L = \frac{-\sin(\pi/2)}{2(0^4+4)} = \frac{-1}{8}.