Solveeit Logo

Question

Question: NaBr, used to produce AgBr for use in photography can be self prepared as follows: $Fe + Br_2 \long...

NaBr, used to produce AgBr for use in photography can be self prepared as follows:

Fe+Br2FeBr2Fe + Br_2 \longrightarrow FeBr_2 ....(i)

FeBr2+Br2Fe3Br8FeBr_2 + Br_2 \longrightarrow Fe_3Br_8 ....(ii) (not balanced)

Fe3Br8+Na2CO3NaBr+CO2+Fe3O4Fe_3Br_8 + Na_2CO_3 \longrightarrow NaBr + CO_2 + Fe_3O_4 ....(iii) (not balanced)

(At. mass : Fe = 56, Br = 80)

  1. Mass of iron required to produce 2.06 × 10310^3 kg NaBr
A

420 gm

B

420 kg

C

4.2 × 10510^5 kg

D

4.2 × 10810^8 gm

Answer

420 kg

Explanation

Solution

The problem involves a series of chemical reactions to produce NaBr. We need to balance the reactions and use stoichiometry, considering reaction yields where specified.

1. Balancing the Chemical Equations:

  • Reaction (i): Fe+Br2FeBr2Fe + Br_2 \longrightarrow FeBr_2 (Already balanced)
  • Reaction (ii): FeBr2+Br2Fe3Br8FeBr_2 + Br_2 \longrightarrow Fe_3Br_8 To balance Fe, multiply FeBr2FeBr_2 by 3: 3FeBr2+Br2Fe3Br83FeBr_2 + Br_2 \longrightarrow Fe_3Br_8. Now count Br: 3×2+2=83 \times 2 + 2 = 8 on the left, 8 on the right. Balanced. Balanced (ii): 3FeBr2+Br2Fe3Br83FeBr_2 + Br_2 \longrightarrow Fe_3Br_8
  • Reaction (iii): Fe3Br8+Na2CO3NaBr+CO2+Fe3O4Fe_3Br_8 + Na_2CO_3 \longrightarrow NaBr + CO_2 + Fe_3O_4 Balance Br: 8 Br on left, so 8 NaBr on right: Fe3Br8+Na2CO38NaBr+CO2+Fe3O4Fe_3Br_8 + Na_2CO_3 \longrightarrow 8NaBr + CO_2 + Fe_3O_4. Balance Na: 8 Na on right, so 4 Na2CO3Na_2CO_3 on left: Fe3Br8+4Na2CO38NaBr+CO2+Fe3O4Fe_3Br_8 + 4Na_2CO_3 \longrightarrow 8NaBr + CO_2 + Fe_3O_4. Balance C: 4 C on left, so 4 CO2CO_2 on right: Fe3Br8+4Na2CO38NaBr+4CO2+Fe3O4Fe_3Br_8 + 4Na_2CO_3 \longrightarrow 8NaBr + 4CO_2 + Fe_3O_4. Check O: 4×3=124 \times 3 = 12 on left. 4×2+4=124 \times 2 + 4 = 12 on right. Balanced. Balanced (iii): Fe3Br8+4Na2CO38NaBr+4CO2+Fe3O4Fe_3Br_8 + 4Na_2CO_3 \longrightarrow 8NaBr + 4CO_2 + Fe_3O_4

2. Overall Stoichiometry of Fe to NaBr: From (i): 1 mol Fe1 mol FeBr21 \text{ mol Fe} \longrightarrow 1 \text{ mol } FeBr_2

From (ii): 3 mol FeBr21 mol Fe3Br83 \text{ mol } FeBr_2 \longrightarrow 1 \text{ mol } Fe_3Br_8

From (iii): 1 mol Fe3Br88 mol NaBr1 \text{ mol } Fe_3Br_8 \longrightarrow 8 \text{ mol } NaBr

Combining these: To get 1 mol Fe3Br8Fe_3Br_8, we need 3 mol FeBr2FeBr_2. To get 3 mol FeBr2FeBr_2, we need 3 mol Fe. So, 3 mol Fe1 mol Fe3Br83 \text{ mol Fe} \longrightarrow 1 \text{ mol } Fe_3Br_8. Since 1 mol Fe3Br8Fe_3Br_8 gives 8 mol NaBr, then: 3 mol Fe8 mol NaBr3 \text{ mol Fe} \longrightarrow 8 \text{ mol NaBr}

3. Molar Masses: Fe = 56 g/mol Br = 80 g/mol Na = 23 g/mol NaBr = 23 + 80 = 103 g/mol

4. Solution for Q.16: Mass of iron required to produce 2.06 × 10310^3 kg NaBr (100% yield)

  1. Convert target NaBr mass to grams: Mass of NaBr = 2.06 × 10310^3 kg = 2.06 × 103×10310^3 \times 10^3 g = 2.06 × 10610^6 g.
  2. Calculate moles of NaBr: Moles of NaBr = Mass / Molar mass = (2.06 × 10610^6 g) / (103 g/mol) = 2 × 10410^4 mol.
  3. Calculate moles of Fe required (from overall stoichiometry): From 3 mol Fe8 mol NaBr3 \text{ mol Fe} \longrightarrow 8 \text{ mol NaBr}: Moles of Fe = (3/8) × Moles of NaBr = (3/8) × (2 × 10410^4 mol) = (3/4) × 10410^4 mol = 0.75 × 10410^4 mol = 7500 mol.
  4. Calculate mass of Fe required: Mass of Fe = Moles of Fe × Molar mass of Fe = 7500 mol × 56 g/mol = 420000 g.
  5. Convert mass of Fe to kg: Mass of Fe = 420000 g / 1000 g/kg = 420 kg.

The final answer is 420 kg\boxed{\text{420 kg}}.