Solveeit Logo

Question

Question: Consider $f(x)=x^{\ln x}$ and $g(x)=e^2x$. Let $\alpha$ and $\beta$ be two values of $x$ satisfying ...

Consider f(x)=xlnxf(x)=x^{\ln x} and g(x)=e2xg(x)=e^2x. Let α\alpha and β\beta be two values of xx satisfying f(x)=g(x)f(x)=g(x) (α<β\alpha < \beta)

If h(x)=f(x)g(x)h(x)=\frac{f(x)}{g(x)} then h(α)h'(\alpha) equals to:

A

e

B

-e

C

3e

D

-3e

Answer

-3e

Explanation

Solution

To solve the problem, we follow these steps:

1. Simplify f(x)f(x) and set up the equation f(x)=g(x)f(x)=g(x): Given f(x)=xlnxf(x) = x^{\ln x}. We can rewrite this using the property ab=eblnaa^b = e^{b \ln a}: f(x)=eln(xlnx)=e(lnx)(lnx)=e(lnx)2f(x) = e^{\ln(x^{\ln x})} = e^{(\ln x)(\ln x)} = e^{(\ln x)^2}.

Given g(x)=e2xg(x) = e^2 x. Now, set f(x)=g(x)f(x) = g(x): e(lnx)2=e2xe^{(\ln x)^2} = e^2 x

2. Solve for xx to find α\alpha and β\beta: Take the natural logarithm on both sides of the equation: ln(e(lnx)2)=ln(e2x)\ln(e^{(\ln x)^2}) = \ln(e^2 x) (lnx)2=ln(e2)+lnx(\ln x)^2 = \ln(e^2) + \ln x (lnx)2=2+lnx(\ln x)^2 = 2 + \ln x

Rearrange into a quadratic equation by letting y=lnxy = \ln x: y2y2=0y^2 - y - 2 = 0

Factor the quadratic equation: (y2)(y+1)=0(y-2)(y+1) = 0

This gives two possible values for yy: y=2lnx=2x=e2y = 2 \quad \Rightarrow \ln x = 2 \quad \Rightarrow x = e^2 y=1lnx=1x=e1=1ey = -1 \quad \Rightarrow \ln x = -1 \quad \Rightarrow x = e^{-1} = \frac{1}{e}

We are given that α\alpha and β\beta are two values of xx satisfying f(x)=g(x)f(x)=g(x) and α<β\alpha < \beta. Comparing the values e2e^2 and 1e\frac{1}{e}: Since e2.718e \approx 2.718, e27.389e^2 \approx 7.389 and 1e0.368\frac{1}{e} \approx 0.368. Therefore, α=1e\alpha = \frac{1}{e} and β=e2\beta = e^2.

3. Define and simplify h(x)h(x): Given h(x)=f(x)g(x)h(x) = \frac{f(x)}{g(x)}. Substitute the simplified forms of f(x)f(x) and g(x)g(x): h(x)=e(lnx)2e2xh(x) = \frac{e^{(\ln x)^2}}{e^2 x} Using properties of exponents (ea/eb=eabe^a/e^b = e^{a-b}) and x1=elnxx^{-1} = e^{-\ln x}: h(x)=e(lnx)22x1h(x) = e^{(\ln x)^2 - 2} \cdot x^{-1} h(x)=e(lnx)22elnxh(x) = e^{(\ln x)^2 - 2} \cdot e^{-\ln x} h(x)=e(lnx)2lnx2h(x) = e^{(\ln x)^2 - \ln x - 2}

4. Differentiate h(x)h(x): Use the chain rule for h(x)=eu(x)h(x) = e^{u(x)} where u(x)=(lnx)2lnx2u(x) = (\ln x)^2 - \ln x - 2: h(x)=eu(x)u(x)h'(x) = e^{u(x)} \cdot u'(x) u(x)=ddx((lnx)2lnx2)u'(x) = \frac{d}{dx} ((\ln x)^2 - \ln x - 2) u(x)=2lnx1x1x0u'(x) = 2 \ln x \cdot \frac{1}{x} - \frac{1}{x} - 0 u(x)=2lnx1xu'(x) = \frac{2 \ln x - 1}{x}

So, h(x)=e(lnx)2lnx22lnx1xh'(x) = e^{(\ln x)^2 - \ln x - 2} \cdot \frac{2 \ln x - 1}{x}.

5. Evaluate h(α)h'(\alpha): Substitute α=1e\alpha = \frac{1}{e} into h(x)h'(x). First, find lnα\ln \alpha: lnα=ln(1e)=ln(e1)=1\ln \alpha = \ln\left(\frac{1}{e}\right) = \ln(e^{-1}) = -1.

Now, substitute α=1e\alpha = \frac{1}{e} and lnα=1\ln \alpha = -1 into the expression for h(α)h'(\alpha): The exponent in e(lnα)2lnα2e^{(\ln \alpha)^2 - \ln \alpha - 2} becomes: (lnα)2lnα2=(1)2(1)2=1+12=0(\ln \alpha)^2 - \ln \alpha - 2 = (-1)^2 - (-1) - 2 = 1 + 1 - 2 = 0. So, e(lnα)2lnα2=e0=1e^{(\ln \alpha)^2 - \ln \alpha - 2} = e^0 = 1.

Substitute this back into h(α)h'(\alpha): h(α)=12(lnα)1αh'(\alpha) = 1 \cdot \frac{2(\ln \alpha) - 1}{\alpha} h(α)=12(1)11/eh'(\alpha) = 1 \cdot \frac{2(-1) - 1}{1/e} h(α)=211/eh'(\alpha) = \frac{-2 - 1}{1/e} h(α)=31/eh'(\alpha) = \frac{-3}{1/e} h(α)=3eh'(\alpha) = -3e

The final answer is -3e.