Question
Question: Consider $f(x)=x^{\ln x}$ and $g(x)=e^2x$. Let $\alpha$ and $\beta$ be two values of $x$ satisfying ...
Consider f(x)=xlnx and g(x)=e2x. Let α and β be two values of x satisfying f(x)=g(x) (α<β)
If h(x)=g(x)f(x) then h′(α) equals to:

e
-e
3e
-3e
-3e
Solution
To solve the problem, we follow these steps:
1. Simplify f(x) and set up the equation f(x)=g(x): Given f(x)=xlnx. We can rewrite this using the property ab=eblna: f(x)=eln(xlnx)=e(lnx)(lnx)=e(lnx)2.
Given g(x)=e2x. Now, set f(x)=g(x): e(lnx)2=e2x
2. Solve for x to find α and β: Take the natural logarithm on both sides of the equation: ln(e(lnx)2)=ln(e2x) (lnx)2=ln(e2)+lnx (lnx)2=2+lnx
Rearrange into a quadratic equation by letting y=lnx: y2−y−2=0
Factor the quadratic equation: (y−2)(y+1)=0
This gives two possible values for y: y=2⇒lnx=2⇒x=e2 y=−1⇒lnx=−1⇒x=e−1=e1
We are given that α and β are two values of x satisfying f(x)=g(x) and α<β. Comparing the values e2 and e1: Since e≈2.718, e2≈7.389 and e1≈0.368. Therefore, α=e1 and β=e2.
3. Define and simplify h(x): Given h(x)=g(x)f(x). Substitute the simplified forms of f(x) and g(x): h(x)=e2xe(lnx)2 Using properties of exponents (ea/eb=ea−b) and x−1=e−lnx: h(x)=e(lnx)2−2⋅x−1 h(x)=e(lnx)2−2⋅e−lnx h(x)=e(lnx)2−lnx−2
4. Differentiate h(x): Use the chain rule for h(x)=eu(x) where u(x)=(lnx)2−lnx−2: h′(x)=eu(x)⋅u′(x) u′(x)=dxd((lnx)2−lnx−2) u′(x)=2lnx⋅x1−x1−0 u′(x)=x2lnx−1
So, h′(x)=e(lnx)2−lnx−2⋅x2lnx−1.
5. Evaluate h′(α): Substitute α=e1 into h′(x). First, find lnα: lnα=ln(e1)=ln(e−1)=−1.
Now, substitute α=e1 and lnα=−1 into the expression for h′(α): The exponent in e(lnα)2−lnα−2 becomes: (lnα)2−lnα−2=(−1)2−(−1)−2=1+1−2=0. So, e(lnα)2−lnα−2=e0=1.
Substitute this back into h′(α): h′(α)=1⋅α2(lnα)−1 h′(α)=1⋅1/e2(−1)−1 h′(α)=1/e−2−1 h′(α)=1/e−3 h′(α)=−3e
The final answer is -3e.