Solveeit Logo

Question

Question: Consider a general equation of degree 2, as $\lambda x^2 - 10xy + 12y^2 + 5x - 16y - 3 = 0$. The val...

Consider a general equation of degree 2, as λx210xy+12y2+5x16y3=0\lambda x^2 - 10xy + 12y^2 + 5x - 16y - 3 = 0. The value of 'λ\lambda' for which the line pair represents a pair of straight lines is

A

1

B

2

C

3/2

D

3

Answer

2

Explanation

Solution

The general equation of a second-degree curve is ax2+2hxy+by2+2gx+2fy+c=0ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0. For the given equation λx210xy+12y2+5x16y3=0\lambda x^2 - 10xy + 12y^2 + 5x - 16y - 3 = 0, we have: a=λa = \lambda, 2h=10    h=52h = -10 \implies h = -5, b=12b = 12, 2g=5    g=5/22g = 5 \implies g = 5/2, 2f=16    f=82f = -16 \implies f = -8, c=3c = -3.

The condition for the general second-degree equation to represent a pair of straight lines is that the determinant of the coefficients is zero: ahghbfgfc=0\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0 Substituting the coefficients: λ55/251285/283=0\begin{vmatrix} \lambda & -5 & 5/2 \\ -5 & 12 & -8 \\ 5/2 & -8 & -3 \end{vmatrix} = 0 Expanding the determinant: λ[(12)(3)(8)(8)](5)[(5)(3)(8)(5/2)]+(5/2)[(5)(8)(12)(5/2)]=0\lambda[(12)(-3) - (-8)(-8)] - (-5)[(-5)(-3) - (-8)(5/2)] + (5/2)[(-5)(-8) - (12)(5/2)] = 0 λ[3664]+5[15(20)]+(5/2)[4030]=0\lambda[-36 - 64] + 5[15 - (-20)] + (5/2)[40 - 30] = 0 λ[100]+5[35]+(5/2)[10]=0\lambda[-100] + 5[35] + (5/2)[10] = 0 100λ+175+25=0-100\lambda + 175 + 25 = 0 100λ+200=0-100\lambda + 200 = 0 100λ=200100\lambda = 200 λ=2\lambda = 2