Solveeit Logo

Question

Question: Packing efficiency of body centered unit cell is A. \(85\)% B. \(68\)% C. \(33.33\)% D. \(4...

Packing efficiency of body centered unit cell is
A. 8585%
B. 6868%
C. 33.3333.33%
D. 4545%

Explanation

Solution

In a body-centered cubic unit cell, the radius is one-fourth of diagonal length. The diagonal edge length of the body-centered cubic unit cell is a3a\sqrt 3 . By this, we will determine the volume of the cube. Then divide the volume of two spheres by the volume of the cube to determine the packing efficiency.
Formula used: packingefficiency = volumeoccupiedbytwosphereinunitcelltotalvolumeofunitcell×100{\text{packing}}\,{\text{efficiency}}\,{\text{ = }}\,\dfrac{{{\text{volume}}\,{\text{occupied}}\,{\text{by}}\,{\text{two}}\,{\text{sphere}}\,{\text{in}}\,{\text{unit}}\,{\text{cell}}}}{{\,{\text{total}}\,{\text{volume}}\,{\text{of}}\,{\text{unit}}\,{\text{cell}}}}{{ \times 100}}

Complete step-by-step solution
The total space occupied by the particles in percentage is defined as the packing efficiency.
The formula to determine packing efficiency is as follows:
packingefficiency = volumeoccupiedbytwosphereinunitcelltotalvolumeofunitcell×100{\text{packing}}\,{\text{efficiency}}\,{\text{ = }}\,\dfrac{{{\text{volume}}\,{\text{occupied}}\,{\text{by}}\,{\text{two}}\,{\text{sphere}}\,{\text{in}}\,{\text{unit}}\,{\text{cell}}}}{{\,{\text{total}}\,{\text{volume}}\,{\text{of}}\,{\text{unit}}\,{\text{cell}}}}{{ \times 100}}
The volume of the sphere is, 43πr3\dfrac{{\text{4}}}{{\text{3}}}{{\pi }}{{\text{r}}^3}
The formula of the volume of the cube is, a3{a^3}
So, the packing efficiency is,
packingefficiency = 2×43πr3a3×100{\text{packing}}\,{\text{efficiency}}\,{\text{ = }}\,\dfrac{{2\, \times \dfrac{{\text{4}}}{{\text{3}}}{{\pi }}{{\text{r}}^3}}}{{\,{{\text{a}}^3}}}{{ \times 100}}
The volume of the body-centred cubic unit cell a3{{\text{a}}^3} is as follows:
In the body-centred cubic unit cell, the relation between atomic radius edge length is as follows:
r=a34r\, = \dfrac{{a\sqrt 3 }}{4}
Where,
rr\,is the atomic radius.
aa is the edge length of the unit cell.
Rearrange for edge length, a=4r3a\, = \dfrac{{4\,r}}{{\sqrt 3 }}
So, the volume body-centred cubic unit cell is, a3=(4r3)3{a^3}\, = {\left( {\dfrac{{4\,r}}{{\sqrt 3 }}} \right)^3}
Substitute (4r3)3{\left( {\dfrac{{4\,r}}{{\sqrt 3 }}} \right)^3}for a3{a^3} in packing efficiency formula.
packingefficiency = 2×43πr3(4r3)3×100{\text{packing}}\,{\text{efficiency}}\,{\text{ = }}\,\dfrac{{2\, \times \dfrac{{\text{4}}}{{\text{3}}}{{\pi }}{{\text{r}}^3}}}{{\,{{\left( {\dfrac{{4\,r}}{{\sqrt 3 }}} \right)}^3}}}{{ \times 100}}
packingefficiency = 83πr3×3364r3×100{\text{packing}}\,{\text{efficiency}}\,{\text{ = }}\,\dfrac{8}{{\text{3}}}{{\pi }}{{\text{r}}^3}{{ \times }}\dfrac{{3\sqrt 3 \,}}{{64{r^3}}}{{ \times 100}}
packingefficiency = 68{\text{packing}}\,{\text{efficiency}}\,{\text{ = }}\,68
So, the packing efficiency of a body- centred cubic unit cell is6868%.

Therefore, the correct answer is option (B) 6868%

Note: The total volume of the body centred cubic unit cell is 100100% out of which 6868% is occupied so, the free space is,10068=32100\, - \,68 = \,32. The packing efficiency of the face-centered cubic unit cell which is found in hcp and ccp is 7878% and the percentage of free space is 2222%. The packing efficiency of the simple cubic unit cell is 52.452.4% and the percentage of free space is 47.647.6%. The maximum packing efficiency is of the face-centered cubic unit cell. In the face-centered cubic lattice, the radius is one-fourth of the diagonal length. The diagonal edge length of the face-centered cubic unit cell is a2a\sqrt 2 . In a simple cubic unit cell, the edge length is double the radius of the unit cell.