Solveeit Logo

Question

Question: Reduce the following expression to a simplified rational: $\frac{1}{1 - \cos \frac{\pi}{9}} + \frac{...

Reduce the following expression to a simplified rational: 11cosπ9+11cos5π9+11cos7π9\frac{1}{1 - \cos \frac{\pi}{9}} + \frac{1}{1 - \cos \frac{5\pi}{9}} + \frac{1}{1 - \cos \frac{7\pi}{9}}

Answer

18

Explanation

Solution

Let the given expression be SS. We have: S=11cosπ9+11cos5π9+11cos7π9S = \frac{1}{1 - \cos \frac{\pi}{9}} + \frac{1}{1 - \cos \frac{5\pi}{9}} + \frac{1}{1 - \cos \frac{7\pi}{9}}

Consider the identity cos(3θ)=4cos3θ3cosθ\cos(3\theta) = 4\cos^3\theta - 3\cos\theta. Let θ=π9\theta = \frac{\pi}{9}. Then 3θ=π33\theta = \frac{\pi}{3}, and cos(3θ)=cos(π3)=12\cos(3\theta) = \cos(\frac{\pi}{3}) = \frac{1}{2}. Let x=cos(π9)x = \cos(\frac{\pi}{9}). Substituting into the identity: 4x33x=124x^3 - 3x = \frac{1}{2} 8x36x=18x^3 - 6x = 1 8x36x1=08x^3 - 6x - 1 = 0

The roots of this cubic equation are x1=cos(π9)x_1 = \cos(\frac{\pi}{9}), x2=cos(5π9)x_2 = \cos(\frac{5\pi}{9}), and x3=cos(7π9)x_3 = \cos(\frac{7\pi}{9}).

The expression we need to simplify is S=11x1+11x2+11x3S = \frac{1}{1 - x_1} + \frac{1}{1 - x_2} + \frac{1}{1 - x_3}. Let y=1xy = 1 - x. Then x=1yx = 1 - y. Substitute this into the cubic equation 8x36x1=08x^3 - 6x - 1 = 0: 8(1y)36(1y)1=08(1-y)^3 - 6(1-y) - 1 = 0 8(13y+3y2y3)6+6y1=08(1 - 3y + 3y^2 - y^3) - 6 + 6y - 1 = 0 824y+24y28y37+6y=08 - 24y + 24y^2 - 8y^3 - 7 + 6y = 0 8y3+24y218y+1=0-8y^3 + 24y^2 - 18y + 1 = 0 Multiplying by -1, we get: 8y324y2+18y1=08y^3 - 24y^2 + 18y - 1 = 0

The roots of this new cubic equation are y1=1x1y_1 = 1 - x_1, y2=1x2y_2 = 1 - x_2, and y3=1x3y_3 = 1 - x_3. We need to compute S=1y1+1y2+1y3S = \frac{1}{y_1} + \frac{1}{y_2} + \frac{1}{y_3}.

Using Vieta's formulas for the cubic equation Ay3+By2+Cy+D=0Ay^3 + By^2 + Cy + D = 0: Sum of products of roots taken two at a time: y1y2+y2y3+y3y1=CAy_1y_2 + y_2y_3 + y_3y_1 = \frac{C}{A} Product of roots: y1y2y3=DAy_1y_2y_3 = -\frac{D}{A}

For 8y324y2+18y1=08y^3 - 24y^2 + 18y - 1 = 0, we have A=8A=8, B=24B=-24, C=18C=18, D=1D=-1. y1y2+y2y3+y3y1=188=94y_1y_2 + y_2y_3 + y_3y_1 = \frac{18}{8} = \frac{9}{4} y1y2y3=18=18y_1y_2y_3 = -\frac{-1}{8} = \frac{1}{8}

The sum SS can be written as: S=y2y3+y1y3+y1y2y1y2y3S = \frac{y_2y_3 + y_1y_3 + y_1y_2}{y_1y_2y_3} S=9/41/8=94×8=9×2=18S = \frac{9/4}{1/8} = \frac{9}{4} \times 8 = 9 \times 2 = 18.