Solveeit Logo

Question

Question: *(p). $\sin \frac{\pi}{13} + \sin \frac{3\pi}{13} + \sin \frac{4\pi}{13} = \frac{1}{2} \cdot \sqrt{\...

*(p). sinπ13+sin3π13+sin4π13=1213+3132\sin \frac{\pi}{13} + \sin \frac{3\pi}{13} + \sin \frac{4\pi}{13} = \frac{1}{2} \cdot \sqrt{\frac{13 + 3\sqrt{13}}{2}}.

Answer

True

Explanation

Solution

The identity is indeed true.

Let S=sinπ13+sin3π13+sin4π13S = \sin \frac{\pi}{13} + \sin \frac{3\pi}{13} + \sin \frac{4\pi}{13}. This sum is a specific value related to the properties of the 13th roots of unity, particularly the Gaussian periods. For a prime p1(mod4)p \equiv 1 \pmod 4, the sum of sines of certain angles can be expressed in terms of p\sqrt{p}. For p=13p=13, it is a known result that:

sinπ13+sin3π13+sin4π13=1213+3132\sin \frac{\pi}{13} + \sin \frac{3\pi}{13} + \sin \frac{4\pi}{13} = \frac{1}{2} \sqrt{\frac{13+3\sqrt{13}}{2}}

And also:

sin2π13+sin5π13+sin6π13=12133132\sin \frac{2\pi}{13} + \sin \frac{5\pi}{13} + \sin \frac{6\pi}{13} = \frac{1}{2} \sqrt{\frac{13-3\sqrt{13}}{2}}

These results are derived using advanced number theory and properties of cyclotomic polynomials and Gaussian sums. The direct derivation is beyond the scope of typical JEE/NEET syllabus but the identity itself is a known mathematical fact. Therefore, the statement is true.