Solveeit Logo

Question

Question: $(p \rightarrow q) \land \neg q ] \rightarrow p$ is Totology, is equivalent to...

(pq)¬q]p(p \rightarrow q) \land \neg q ] \rightarrow p is Totology, is equivalent to

A

p¬qp \land \neg q

B

qpq \vee p

C

pqp \land q

D

pqp \land q

Answer

qpq \vee p

Explanation

Solution

Solution:

  1. Rewrite pqp\to q as ¬pq\neg p \lor q.
    Thus, the antecedent becomes:

    (¬pq)¬q.(\neg p \lor q) \land \neg q.
  2. Apply distribution:

    (¬pq)¬q=(¬p¬q)(q¬q).(\neg p \lor q) \land \neg q = (\neg p \land \neg q) \lor (q \land \neg q).

    Since q¬qq \land \neg q is always false, we have:

    (¬pq)¬q=¬p¬q.(\neg p \lor q) \land \neg q = \neg p \land \neg q.
  3. Now, the original expression is:

    (¬p¬q)p.(\neg p \land \neg q) \to p.

    An implication ABA\to B is equivalent to ¬AB\neg A \lor B, so:

    ¬(¬p¬q)p.\neg(\neg p \land \neg q) \lor p.
  4. Using De Morgan's law:

    ¬(¬p¬q)=pq.\neg(\neg p \land \neg q) = p \lor q.

    Therefore, the expression simplifies to:

    (pq)p=pq.(p \lor q) \lor p = p\lor q.

Thus, the given formula is equivalent to pqp \lor q, which is the same as qpq \vee p.