Question
Physics Question on Dimensional Analysis
P represents radiation pressure, c represents speed of light and S represents radiation energy striking per unit area per sec. The non zero integers x, y, z such that PxSycz is dimensionless are
x=1 , y=1, z=1
x=−1 , y=1 , z=1
x=1, y=−1 , z=1
x=1, y=1, z=−1
x=1, y=−1 , z=1
Solution
Let k=PxSycz.....(i) k is a dimensionless Dimensions of k=[M0L0T0] ∴ Dimensions of P =AreaForce=[L2][MLT−2]=[ML−1T−2] Dimensions of S= \frac{\text{Energy}}{\text{Area \times time}}=\frac{[ML^2T^{-2}]}{[L^2][T]}=[MT^{-3}] Dimensions of c=[LT−1] Substituting these dimensions in eqn (i), we get [M0L0T0]=[ML−1T−2]x[MT−3]y[LT−1]z. Applying the principle of homogeneity of dimensions, we get x+y=0....(ii) −x+z=0....(iii) −2x−3y−z=0....(iv) Solving (ii), (iii) and (iv), we get x=1,y=−1,z=1