Solveeit Logo

Question

Physics Question on Dimensional Analysis

PP represents radiation pressure, cc represents speed of light and SS represents radiation energy striking per unit area per sec. The non zero integers xx, yy, zz such that PxSyczP^x S^y c^z is dimensionless are

A

x=1x = 1 , y=1y = 1, z=1z = 1

B

x=1x= - 1 , y=1y = 1 , z=1z= 1

C

x=1x = 1, y=1y = -1 , z=1z = 1

D

x=1x = 1, y=1y = 1, z=1z = -1

Answer

x=1x = 1, y=1y = -1 , z=1z = 1

Explanation

Solution

Let k=PxSycz.....(i)k=P^x S^y c^z .....(i) kk is a dimensionless Dimensions of k=[M0L0T0]k=[M^0 L^0 T^0] \therefore Dimensions of PP =ForceArea=[MLT2][L2]=[ML1T2]=\frac{\text{Force}}{\text{Area}}=\frac{[MLT^{-2}]}{[L^2]}=[ML^{-1}T^{-2}] Dimensions of S=S= \frac{\text{Energy}}{\text{Area \times time}}=\frac{[ML^2T^{-2}]}{[L^2][T]}=[MT^{-3}] Dimensions of c=[LT1]c=[LT^{-1}] Substituting these dimensions in eqn (i)(i), we get [M0L0T0]=[ML1T2]x[MT3]y[LT1]z.[M^0 L^0 T^0]=[ML^{-1}T^{-2}]^x[MT^{-3}]^y[LT^{-1}]^z. Applying the principle of homogeneity of dimensions, we get x+y=0....(ii) x+y=0 ....(ii) x+z=0....(iii) -x+z=0 ....(iii) 2x3yz=0....(iv) -2x-3y-z=0 ....(iv) Solving (ii)(ii), (iii)(iii) and (iv)(iv), we get x=1,y=1,z=1x=1, y=-1, z=1