Solveeit Logo

Question

Mathematics Question on Coplanarity of Two Lines

pp points are chosen on each of the three coplanar lines. The maximum number of triangles formed with vertices at these points is

A

p3+3p2p^{3}+3 p^{2}

B

12(p3+p)\frac{1}{2}\left(p^{3}+p\right)

C

p22(5p3)\frac{p^{2}}{2}(5 p-3)

D

p2(4p3)p^{2}(4 p-3)

Answer

p2(4p3)p^{2}(4 p-3)

Explanation

Solution

Total number of points in a plane is 3p3 p.
\therefore Maximum number of triangles
=3pC33pC3={ }^{3 p} C_{3}-3 \cdot{ }^{p} C_{3}
[Here, we subtract those triangles which points are in a line]
=(3p)!(3p3)!3!3p!(p3)!3!=\frac{(3 p) !}{(3 p-3) ! 3 !}-3 \cdot \frac{p !}{(p-3) ! 3 !}
=3p(3p1)(3p2)3×23×p(p1)(p2)3×2=\frac{3 p(3 p-1)(3 p-2)}{3 \times 2}-\frac{3 \times p(p-1)(p-2)}{3 \times 2}
=p2[9p29p+2(p23p+2)]=\frac{p}{2}\left[9 p^{2}-9 p+2-\left(p^{2}-3 p+2\right)\right]
=p2(4p3)=p^{2}(4 p -3)