Solveeit Logo

Question

Question: P is the point of intersection of the diagonals of the parallelogram ABCD. If O is any point, then ...

P is the point of intersection of the diagonals of the parallelogram ABCD. If O is any point, then

OA+OB+OC+OD=\overset{\rightarrow}{OA} + \overset{\rightarrow}{OB} + \overset{\rightarrow}{OC} + \overset{\rightarrow}{OD} =

A

OP\overset{\rightarrow}{OP}

B

2OP2\overset{\rightarrow}{OP}

C

3OP3\overset{\rightarrow}{OP}

D

4OP4\overset{\rightarrow}{OP}

Answer

4OP4\overset{\rightarrow}{OP}

Explanation

Solution

We know that P will be the midpoint of AC and BD

\therefore OA+OC=2OP\overset{\rightarrow}{OA} + \overset{\rightarrow}{OC} = 2\overset{\rightarrow}{OP} ......(i)

and OB+OD=2OP\overset{\rightarrow}{OB} + \overset{\rightarrow}{OD} = 2\overset{\rightarrow}{OP} …..(ii)

Adding (i) and (ii), we get, OA+OB+OC+OD=4OP.\overset{\rightarrow}{OA} + \overset{\rightarrow}{OB} + \overset{\rightarrow}{OC} + \overset{\rightarrow}{OD} = 4\overset{\rightarrow}{OP}.