Solveeit Logo

Question

Mathematics Question on Application of derivatives

PP is the point of contact of the tangent from the origin to the curve y=logexy = log_ex The length of the perpendicular drawn from the origin to the normal at PP is ______

A

2e2+12\sqrt {e^2+1}

B

e2+1\sqrt {e^2+1}

C

12e\frac {1}{2e}

D

1e\frac {1}{e}

Answer

e2+1\sqrt {e^2+1}

Explanation

Solution

Given, curve y=logexy=\log _{e} x...(i)
Let the coordinate of point of contact P(α,β)P(\alpha, \beta)
dydx=1x\Rightarrow \frac{d y}{d x}= \frac{1}{x}
Now, equation of tangent at 'P'
(yβ)=1α(xα)(y-\beta)=\frac{1}{\alpha}(x-\alpha)
Since, the tangent passing through the origin ie, (0,0)(0,0)
(0β)=1α(0α)β=1(0-\beta)=\frac{1}{\alpha}(0-\alpha) \Rightarrow \beta=1
At ' PP' from E (i)
β=logeα\beta =\log _{e} \alpha
1=logeα\Rightarrow 1 =\log _{e} \alpha
(β=1)(\because \beta=1)
logeα=logee\Rightarrow \log _{e} \alpha =\log _{e} e
α=e\alpha =e
So, point of contact is P(e,1)P(e, 1).
Now, slope of normal dydx=x\frac{d y}{d x}=-x
(dydx)at(P)=e\left(\frac{d y}{d x}\right)_{ at (P)}=-e
Equation of normal at 'P'
(y1)=e(xe)(y-1)=-e(x-e)
y1=ex+e2y-1=-e x+ e^{2}
ex+y(e2+1)=0e x +y-\left(e^{2}+1\right)=0...(ii)
The length of perpendicular drawn from the origin to the normal
=e0+0(e2+1)=\left|e \cdot 0+0-\left(e^{2}+1\right)\right|
=e2+1=\sqrt{e^{2}+1}
=(e2+1)e2+1=\frac{\left(e^{2}+1\right)}{\sqrt{e^{2}+1}}
=e2+1=\sqrt{e^{2}+1}