Question
Question: P is a variable point on the hyperbola \(\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1\) whose verte...
P is a variable point on the hyperbola a2x2−b2y2=1 whose vertex is A (a, 0). The locus of the middle point of AP is
A
a2(2x−a)2−b22y2=1
B
a2(2x−a)2−b24y2=1
C
a2(2x−a)2−b28y2=1
D
None of these
Answer
a2(2x−a)2−b24y2=1
Explanation
Solution
Let (x1, y1) be the mid point of the variable chord AP (where A is fixed while P varies) of the hyperbola
a2x2−b2y2=1.
Equation of the chord having (x1, y1) as its mid points is a2xx1−b2yy1=a2x12−b2y12 (T = S1)
As it passes through the fixed point A (a, 0)
∴a2ax1=a2x12−b2y12ora24x12−a4x1−b24y12=0
⇒ a24x12−a4x1+1−b24y12=1
⇒ a24x12−4ax1+a2−b24y12=1⇒ a2(2x1−a)2−b24y12=1
Hence locus of (x1, y1) is a2(2x−a)2−b24y2=1.