Solveeit Logo

Question

Question: P is a variable point on the hyperbola \(\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1\) whose verte...

P is a variable point on the hyperbola x2a2y2b2=1\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1 whose vertex is A (a, 0). The locus of the middle point of AP is

A

(2xa)2a22y2b2=1\frac{(2x - a)^{2}}{a^{2}} - \frac{2y^{2}}{b^{2}} = 1

B

(2xa)2a24y2b2=1\frac{(2x - a)^{2}}{a^{2}} - \frac{4y^{2}}{b^{2}} = 1

C

(2xa)2a28y2b2=1\frac{(2x - a)^{2}}{a^{2}} - \frac{8y^{2}}{b^{2}} = 1

D

None of these

Answer

(2xa)2a24y2b2=1\frac{(2x - a)^{2}}{a^{2}} - \frac{4y^{2}}{b^{2}} = 1

Explanation

Solution

Let (x1, y1) be the mid point of the variable chord AP (where A is fixed while P varies) of the hyperbola

x2a2y2b2=1\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1.

Equation of the chord having (x1, y1) as its mid points is xx1a2yy1b2=x12a2y12b2\frac{xx_{1}}{a^{2}} - \frac{yy_{1}}{b^{2}} = \frac{x_{1}^{2}}{a^{2}} - \frac{y_{1}^{2}}{b^{2}} (T = S1)

As it passes through the fixed point A (a, 0)

ax1a2=x12a2y12b2or4x12a24x1a4y12b2=0\frac{ax_{1}}{a^{2}} = \frac{x_{1}^{2}}{a^{2}} - \frac{y_{1}^{2}}{b^{2}}or\frac{4x_{1}^{2}}{a^{2}} - \frac{4x_{1}}{a} - \frac{4y_{1}^{2}}{b^{2}} = 0

4x12a24x1a+14y12b2=1\frac{4x_{1}^{2}}{a^{2}} - \frac{4x_{1}}{a} + 1 - \frac{4y_{1}^{2}}{b^{2}} = 1

4x124ax1+a2a24y12b2=1\frac{4x_{1}^{2} - 4ax_{1} + a^{2}}{a^{2}} - \frac{4y_{1}^{2}}{b^{2}} = 1(2x1a)2a24y12b2=1\frac{(2x_{1} - a)^{2}}{a^{2}} - \frac{4y_{1}^{2}}{b^{2}} = 1

Hence locus of (x1, y1) is (2xa)2a24y2b2=1\frac{(2x - a)^{2}}{a^{2}} - \frac{4y^{2}}{b^{2}} = 1.